Multiple regulatory actions of 2-guanidine-4-methylquinazoline (GMQ), an agonist of acid-sensing ion channel type 3, on ionic currents in pituitary GH3 cells and in olfactory sensory (Rolf B1.T) neurons

Edmund Cheung So, Yingwei Wang, Li Qun Yang, Kenny Hsu So, Yi Ching Lo, Sheng Nan Wu

Research output: Contribution to journalArticle

4 Citations (Scopus)

Abstract

GMQ (2-guanidine-4-methylquinazoline or N-(4-methyl-2-quinazolinyl)-guanidine hydrochloride), an agonist of acid-sensing ion channel type 3, has been increasingly used for in vivo studies of alternations in nociceptic behavior. In this study, we tried to investigate whether GMQ has any possible effect on other types of ion channels. Addition of GMQ to pituitary GH3 cells raised the amplitude of Ca2+-activated K+ currents (IK(Ca)), which was reversed by verruculogen or PF1022A, but not by TRAM-39. Under inside-out current recordings, addition of GMQ into bath enhanced the probability of large-conductance Ca2+-activated K+ (BKCa) channels with an EC50 value of 0.95 µM. The activation curve of BKCa channels during exposure to GMQ shifted to a lower depolarized potential, with no change in the gating charge of the curve; however, there was a reduction of free energy for channel activation in its presence. As cells were exposed to GMQ, the amplitude of ion currents were suppressed, including delayed rectifying K+ current, voltage-gated Na+ and L-type Ca2+ currents. In Rolf B1.T olfactory sensory neuron, addition of GMQ was able to induce inward current and to suppress peak INa. Taken together, findings from these results indicated that in addition to the activation of ASIC3 channels, this compound might directly produce additional actions on various types of ion channels. Caution should be taken in the interpretation of in vivo experimental results when GMQ or other structurally similar compounds are used as targets to characterize the potential functions of ASIC3 channels.

Original languageEnglish
Pages (from-to)79-88
Number of pages10
JournalBiochemical Pharmacology
Volume151
DOIs
Publication statusPublished - 2018 May

Fingerprint

Acid Sensing Ion Channels
Olfactory Receptor Neurons
Neurons
Chemical activation
Ion Channels
2-guanidine-4-methylquinazoline
Calcium-Activated Potassium Channels
Guanidine
Baths
Free energy
Ions

All Science Journal Classification (ASJC) codes

  • Biochemistry
  • Pharmacology

Cite this

@article{2140c1236e2a48b8adb6d2aa3bd39064,
title = "Multiple regulatory actions of 2-guanidine-4-methylquinazoline (GMQ), an agonist of acid-sensing ion channel type 3, on ionic currents in pituitary GH3 cells and in olfactory sensory (Rolf B1.T) neurons",
abstract = "GMQ (2-guanidine-4-methylquinazoline or N-(4-methyl-2-quinazolinyl)-guanidine hydrochloride), an agonist of acid-sensing ion channel type 3, has been increasingly used for in vivo studies of alternations in nociceptic behavior. In this study, we tried to investigate whether GMQ has any possible effect on other types of ion channels. Addition of GMQ to pituitary GH3 cells raised the amplitude of Ca2+-activated K+ currents (IK(Ca)), which was reversed by verruculogen or PF1022A, but not by TRAM-39. Under inside-out current recordings, addition of GMQ into bath enhanced the probability of large-conductance Ca2+-activated K+ (BKCa) channels with an EC50 value of 0.95 µM. The activation curve of BKCa channels during exposure to GMQ shifted to a lower depolarized potential, with no change in the gating charge of the curve; however, there was a reduction of free energy for channel activation in its presence. As cells were exposed to GMQ, the amplitude of ion currents were suppressed, including delayed rectifying K+ current, voltage-gated Na+ and L-type Ca2+ currents. In Rolf B1.T olfactory sensory neuron, addition of GMQ was able to induce inward current and to suppress peak INa. Taken together, findings from these results indicated that in addition to the activation of ASIC3 channels, this compound might directly produce additional actions on various types of ion channels. Caution should be taken in the interpretation of in vivo experimental results when GMQ or other structurally similar compounds are used as targets to characterize the potential functions of ASIC3 channels.",
author = "So, {Edmund Cheung} and Yingwei Wang and Yang, {Li Qun} and So, {Kenny Hsu} and Lo, {Yi Ching} and Wu, {Sheng Nan}",
year = "2018",
month = "5",
doi = "10.1016/j.bcp.2018.02.027",
language = "English",
volume = "151",
pages = "79--88",
journal = "Biochemical Pharmacology",
issn = "0006-2952",
publisher = "Elsevier Inc.",

}

Multiple regulatory actions of 2-guanidine-4-methylquinazoline (GMQ), an agonist of acid-sensing ion channel type 3, on ionic currents in pituitary GH3 cells and in olfactory sensory (Rolf B1.T) neurons. / So, Edmund Cheung; Wang, Yingwei; Yang, Li Qun; So, Kenny Hsu; Lo, Yi Ching; Wu, Sheng Nan.

In: Biochemical Pharmacology, Vol. 151, 05.2018, p. 79-88.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Multiple regulatory actions of 2-guanidine-4-methylquinazoline (GMQ), an agonist of acid-sensing ion channel type 3, on ionic currents in pituitary GH3 cells and in olfactory sensory (Rolf B1.T) neurons

AU - So, Edmund Cheung

AU - Wang, Yingwei

AU - Yang, Li Qun

AU - So, Kenny Hsu

AU - Lo, Yi Ching

AU - Wu, Sheng Nan

PY - 2018/5

Y1 - 2018/5

N2 - GMQ (2-guanidine-4-methylquinazoline or N-(4-methyl-2-quinazolinyl)-guanidine hydrochloride), an agonist of acid-sensing ion channel type 3, has been increasingly used for in vivo studies of alternations in nociceptic behavior. In this study, we tried to investigate whether GMQ has any possible effect on other types of ion channels. Addition of GMQ to pituitary GH3 cells raised the amplitude of Ca2+-activated K+ currents (IK(Ca)), which was reversed by verruculogen or PF1022A, but not by TRAM-39. Under inside-out current recordings, addition of GMQ into bath enhanced the probability of large-conductance Ca2+-activated K+ (BKCa) channels with an EC50 value of 0.95 µM. The activation curve of BKCa channels during exposure to GMQ shifted to a lower depolarized potential, with no change in the gating charge of the curve; however, there was a reduction of free energy for channel activation in its presence. As cells were exposed to GMQ, the amplitude of ion currents were suppressed, including delayed rectifying K+ current, voltage-gated Na+ and L-type Ca2+ currents. In Rolf B1.T olfactory sensory neuron, addition of GMQ was able to induce inward current and to suppress peak INa. Taken together, findings from these results indicated that in addition to the activation of ASIC3 channels, this compound might directly produce additional actions on various types of ion channels. Caution should be taken in the interpretation of in vivo experimental results when GMQ or other structurally similar compounds are used as targets to characterize the potential functions of ASIC3 channels.

AB - GMQ (2-guanidine-4-methylquinazoline or N-(4-methyl-2-quinazolinyl)-guanidine hydrochloride), an agonist of acid-sensing ion channel type 3, has been increasingly used for in vivo studies of alternations in nociceptic behavior. In this study, we tried to investigate whether GMQ has any possible effect on other types of ion channels. Addition of GMQ to pituitary GH3 cells raised the amplitude of Ca2+-activated K+ currents (IK(Ca)), which was reversed by verruculogen or PF1022A, but not by TRAM-39. Under inside-out current recordings, addition of GMQ into bath enhanced the probability of large-conductance Ca2+-activated K+ (BKCa) channels with an EC50 value of 0.95 µM. The activation curve of BKCa channels during exposure to GMQ shifted to a lower depolarized potential, with no change in the gating charge of the curve; however, there was a reduction of free energy for channel activation in its presence. As cells were exposed to GMQ, the amplitude of ion currents were suppressed, including delayed rectifying K+ current, voltage-gated Na+ and L-type Ca2+ currents. In Rolf B1.T olfactory sensory neuron, addition of GMQ was able to induce inward current and to suppress peak INa. Taken together, findings from these results indicated that in addition to the activation of ASIC3 channels, this compound might directly produce additional actions on various types of ion channels. Caution should be taken in the interpretation of in vivo experimental results when GMQ or other structurally similar compounds are used as targets to characterize the potential functions of ASIC3 channels.

UR - http://www.scopus.com/inward/record.url?scp=85043476973&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85043476973&partnerID=8YFLogxK

U2 - 10.1016/j.bcp.2018.02.027

DO - 10.1016/j.bcp.2018.02.027

M3 - Article

C2 - 29477572

AN - SCOPUS:85043476973

VL - 151

SP - 79

EP - 88

JO - Biochemical Pharmacology

JF - Biochemical Pharmacology

SN - 0006-2952

ER -