Abstract
This paper demonstrates a fuzzy Hopfield neural network for segmenting multispectral MR brain images. The proposed approach is a new unsupervised 2-D Hopfield neural network based upon the fuzzy clustering technique. Its implementation consists of the combination of 2-D Hopfield neural network and fuzzy c-means clustering algorithm in order to make parallel implementation for segmenting multispectral MR brain images feasible. For generating feasible results, a fuzzy c-means clustering strategy is included in the Hopfield neural network to eliminate the need for finding weighting factors in the energy function which is formulated and based on a basic concept commonly used in pattern classification, called the 'within-class scatter matrix' principle. The suggested fuzzy c-means clustering strategy has also been proven to be convergent and to allow the network to learn more effectively than the conventional Hopfield neural network. The experimental results show that a near optimal solution can be obtained using the fuzzy Hopfield neural network based on the within-class scatter matrix.
Original language | English |
---|---|
Pages (from-to) | 205-214 |
Number of pages | 10 |
Journal | International Journal of Bio-Medical Computing |
Volume | 42 |
Issue number | 3 |
DOIs | |
Publication status | Published - 1996 Aug |
All Science Journal Classification (ASJC) codes
- Medicine (miscellaneous)