TY - JOUR
T1 - Muscle Mass Measurement Using Machine Learning Algorithms with Electrical Impedance Myography
AU - Cheng, Kuo Sheng
AU - Su, Ya Ling
AU - Kuo, Li Chieh
AU - Yang, Tai Hua
AU - Lee, Chia Lin
AU - Chen, Wenxi
AU - Liu, Shing Hong
N1 - Funding Information:
Funding: This research was supported in part by the Ministry of Science and Technology, Taiwan, under grants MOST 109–2221-E-006-073-MY2, MOST 109-109-2221-E-324 -002-MY2.
Publisher Copyright:
© 2022 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2022/4/1
Y1 - 2022/4/1
N2 - Sarcopenia is a wild chronic disease among elderly people. Although it does not entail a life-threatening risk, it will increase the adverse risk due to the associated unsteady gait, fall, fractures, and functional disability. The import factors in diagnosing sarcopenia are muscle mass and strength. The examination of muscle mass must be carried in the clinic. However, the loss of muscle mass can be improved by rehabilitation that can be performed in non-medical environments. Electronic impedance myography (EIM) can measure some parameters of muscles that have the correlations with muscle mass and strength. The goal of this study is to use machine learning algorithms to estimate the total mass of thigh muscles (MoTM) with the parameters of EIM and body information. We explored the seven major muscles of lower limbs. The feature selection methods, including recursive feature elimination (RFE) and feature combination, were used to select the optimal features based on the ridge regression (RR) and support vector regression (SVR) models. The optimal features were the resistance of rectus femoris normalized by the thigh circumference, phase of tibialis anterior combined with the gender, and body information, height, and weight. There were 96 subjects involved in this study. The performances of estimating the MoTM used the regression coefficient (r2 ) and root-mean-square error (RMSE), which were 0.800 and 0.929, and 1.432 kg and 0.980 kg for RR and SVR models, respectively. Thus, the proposed method could have the potential to support people examining their muscle mass in non-medical environments.
AB - Sarcopenia is a wild chronic disease among elderly people. Although it does not entail a life-threatening risk, it will increase the adverse risk due to the associated unsteady gait, fall, fractures, and functional disability. The import factors in diagnosing sarcopenia are muscle mass and strength. The examination of muscle mass must be carried in the clinic. However, the loss of muscle mass can be improved by rehabilitation that can be performed in non-medical environments. Electronic impedance myography (EIM) can measure some parameters of muscles that have the correlations with muscle mass and strength. The goal of this study is to use machine learning algorithms to estimate the total mass of thigh muscles (MoTM) with the parameters of EIM and body information. We explored the seven major muscles of lower limbs. The feature selection methods, including recursive feature elimination (RFE) and feature combination, were used to select the optimal features based on the ridge regression (RR) and support vector regression (SVR) models. The optimal features were the resistance of rectus femoris normalized by the thigh circumference, phase of tibialis anterior combined with the gender, and body information, height, and weight. There were 96 subjects involved in this study. The performances of estimating the MoTM used the regression coefficient (r2 ) and root-mean-square error (RMSE), which were 0.800 and 0.929, and 1.432 kg and 0.980 kg for RR and SVR models, respectively. Thus, the proposed method could have the potential to support people examining their muscle mass in non-medical environments.
UR - http://www.scopus.com/inward/record.url?scp=85128367800&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85128367800&partnerID=8YFLogxK
U2 - 10.3390/s22083087
DO - 10.3390/s22083087
M3 - Article
C2 - 35459072
AN - SCOPUS:85128367800
SN - 1424-8220
VL - 22
JO - Sensors
JF - Sensors
IS - 8
M1 - 3087
ER -