TY - GEN
T1 - Nanoindentation response and microstructure of single-crystal silicon under different loads
AU - Lee, Woei Shyan
AU - Chen, Tao Hsing
AU - Chang, Shuo Ling
PY - 2009/12/1
Y1 - 2009/12/1
N2 - Nanoindentation tests are performed on single-crystal silicon wafers using a Berkovich indenter and maximum indentation loads of 30 mN, 40 mN, and 70 mN, respectively. The microstructural evolutions of the indented specimens are examined using transmission electron microscopy and selected area diffraction techniques. The results show that the unloading curve of the specimen indented to a maximum load of 30 mN has a smooth profile, whereas those of the specimens indented to 40 mN or 70 mN have a pop-out feature. The hardness and Young's modulus of the silicon specimens reduce with an increasing indentation load, and have values of 15.8 GPa and 182 GPa, respectively, under the highest indentation load of 70 mN. A completely amorphous phase is induced within the indentation zone in the specimen indented to a maximum load of 30 mN, whereas a mixed structure comprising amorphous phase and nanocrystalline phase is found in the indentation zones in the specimens loaded to 40 mN and 70 mN, respectively.
AB - Nanoindentation tests are performed on single-crystal silicon wafers using a Berkovich indenter and maximum indentation loads of 30 mN, 40 mN, and 70 mN, respectively. The microstructural evolutions of the indented specimens are examined using transmission electron microscopy and selected area diffraction techniques. The results show that the unloading curve of the specimen indented to a maximum load of 30 mN has a smooth profile, whereas those of the specimens indented to 40 mN or 70 mN have a pop-out feature. The hardness and Young's modulus of the silicon specimens reduce with an increasing indentation load, and have values of 15.8 GPa and 182 GPa, respectively, under the highest indentation load of 70 mN. A completely amorphous phase is induced within the indentation zone in the specimen indented to a maximum load of 30 mN, whereas a mixed structure comprising amorphous phase and nanocrystalline phase is found in the indentation zones in the specimens loaded to 40 mN and 70 mN, respectively.
UR - http://www.scopus.com/inward/record.url?scp=77958005870&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77958005870&partnerID=8YFLogxK
U2 - 10.1109/NANOMED.2009.5559094
DO - 10.1109/NANOMED.2009.5559094
M3 - Conference contribution
AN - SCOPUS:77958005870
SN - 9781424455287
T3 - 2009 IEEE 3rd International Conference on Nano/Molecular Medicine and Engineering, NANOMED 2009
SP - 164
EP - 167
BT - 2009 IEEE 3rd International Conference on Nano/Molecular Medicine and Engineering, NANOMED 2009
T2 - 2009 IEEE 3rd International Conference on Nano/Molecular Medicine and Engineering, NANOMED 2009
Y2 - 18 October 2009 through 21 October 2009
ER -