Negative-stiffness composite systems and their coupled-field properties

Yun Che Wang, Chih Chin Ko, Keng Wei Chang, Tsai Wen Ko

Research output: Contribution to journalArticlepeer-review

5 Citations (Scopus)

Abstract

Composite materials consisting of negative-stiffness inclusions in positive-stiffness matrix may exhibit anomalous effective coupled-field properties through the interactions of the positive and negative phases, giving rise to extremely large or small effective properties. In this work, effective viscoelastic properties of a continuum composite system under the effects of negative inclusion Young’s modulus ratio λE= Einc/ Ematrix are studied with the finite element method. Furthermore, effective coupled-field properties, such as thermal expansion coefficient, dielectric constants and piezeoelectric constants, are numerically calculated under the effects of negative inclusion bulk modulus ratio λK= Kinc/ Kmatrix. Stability boundaries are determined by applying small dynamic perturbation to the systems through boundary surfaces, and the system is unstable if its field variables become divergent in time. For viscoelastic composite systems containing small volume fractions, less than Vi= 1.5 % , the systems can be stable up to λE≈ - 0.3 in 0.3 s under 10 Hz driving frequency. For Vi= 5.1 % case, its stability boundary is around λE≈ 0. Larger inclusion volume fraction reduces allowable negative stiffness in the viscoelastic system. All anomalous peaks found in the coupled-field properties are in the unstable regime, except for the piezoelectric and thermal-expansion anomalies in the composite system with electrically insulated inclusions and large inclusion volume fraction Vi= 26.81 %. Insulated inclusions may cause charge accumulation at the inclusion–matrix interface and boundary surface effects may serve as stabilizing agents to the composite system. Since it is known that negative-stiffness composite is unstable in the purely elastic system in statics, stability enhancement found here in the negative-stiffness systems with viscoelastic and coupled-field effects may be considered as multiphysics-induced stabilization.

Original languageEnglish
Pages (from-to)1857-1872
Number of pages16
JournalContinuum Mechanics and Thermodynamics
Volume33
Issue number4
DOIs
Publication statusPublished - 2021 Jul

All Science Journal Classification (ASJC) codes

  • Materials Science(all)
  • Mechanics of Materials
  • Physics and Astronomy(all)

Fingerprint

Dive into the research topics of 'Negative-stiffness composite systems and their coupled-field properties'. Together they form a unique fingerprint.

Cite this