Neural Correlates of Repetition Priming: A Coordinate-Based Meta-Analysis of fMRI Studies

Sung Mu Lee, Richard N. Henson, Chun Yu Lin

Research output: Contribution to journalReview articlepeer-review

Abstract

Repetition priming is a form of implicit memory, whereby classification or identification of a stimulus is improved by prior presentation of the same stimulus. Repetition priming is accompanied with a deceased fMRI signal for primed vs. unprimed stimuli in various brain regions, often called “repetition suppression,” or RS. Previous studies proposed that RS in posterior regions is associated with priming of perceptual processes, whereas RS in more anterior (prefrontal) regions is associated with priming of conceptual processes. To clarify which regions exhibit reliable RS associated with perceptual and conceptual priming, we conducted a quantitative meta-analysis using coordinate-based activation likelihood estimation. This analysis included 65 fMRI studies that (i) employed visual repetition priming during either perceptual or conceptual tasks, (ii) demonstrated behavioral priming, and (iii) reported the results from whole-brain analyses. Our results showed that repetition priming was mainly associated with RS in left inferior frontal gyrus and fusiform gyrus. Importantly, RS in these regions was found for both perceptual and conceptual tasks, and no regions show RS that was selective to one of these tasks. These results question the simple distinction between conceptual and perceptual priming, and suggest consideration of other factors such as stimulus-response bindings.

Original languageEnglish
Article number565114
JournalFrontiers in Human Neuroscience
Volume14
DOIs
Publication statusPublished - 2020 Sep 18

All Science Journal Classification (ASJC) codes

  • Neuropsychology and Physiological Psychology
  • Neurology
  • Psychiatry and Mental health
  • Biological Psychiatry
  • Behavioral Neuroscience

Fingerprint Dive into the research topics of 'Neural Correlates of Repetition Priming: A Coordinate-Based Meta-Analysis of fMRI Studies'. Together they form a unique fingerprint.

Cite this