TY - GEN
T1 - Neural network approach to identify batch cell growth
AU - Syu, Mei-Jywan
AU - Tsao, George T.
PY - 1993/1/1
Y1 - 1993/1/1
N2 - A saturation-type transfer function with a backpropagation neural network (BPNN) was proposed for solving the modeling problem of batch cell growth system. Batch chemical processes are usually influenced by their initial conditions. For batch cell cultures, the initial state strongly governs the growth pattern during the timecourse. In modeling a chemical system, we are always interested in how to model the outcome of the system related to some affecting factors. In a batch system, some of the initial conditions are certainly important affecting factors. Trying to model the cell growth with information concerning only the initial conditions is not yet possible from a kinetic approach. The difficulty comes from numerical analysis and insufficient knowledge regarding certain growth parameters as they vary with time. Accordingly, neural network methodology with the concept developed earlier was proposed to solve this problem. The feasibility and capability of the neural network to model the pattern of batch cell growth by providing initial conditions only is tested in this study. A 2-3-8 BPNN with initial glucose and cell concentrations as the two inputs, cell densities measured at eight each hours as the eight outputs was thus constructed. The simulation and prediction results of this BPNN are presented to demonstrate the performance and applicability of this newly discovered transfer function. Sensitivity analysis of the initial factors from this neural network model (NNM) is also discussed. The optimization of the initial conditions for this system is also performed.
AB - A saturation-type transfer function with a backpropagation neural network (BPNN) was proposed for solving the modeling problem of batch cell growth system. Batch chemical processes are usually influenced by their initial conditions. For batch cell cultures, the initial state strongly governs the growth pattern during the timecourse. In modeling a chemical system, we are always interested in how to model the outcome of the system related to some affecting factors. In a batch system, some of the initial conditions are certainly important affecting factors. Trying to model the cell growth with information concerning only the initial conditions is not yet possible from a kinetic approach. The difficulty comes from numerical analysis and insufficient knowledge regarding certain growth parameters as they vary with time. Accordingly, neural network methodology with the concept developed earlier was proposed to solve this problem. The feasibility and capability of the neural network to model the pattern of batch cell growth by providing initial conditions only is tested in this study. A 2-3-8 BPNN with initial glucose and cell concentrations as the two inputs, cell densities measured at eight each hours as the eight outputs was thus constructed. The simulation and prediction results of this BPNN are presented to demonstrate the performance and applicability of this newly discovered transfer function. Sensitivity analysis of the initial factors from this neural network model (NNM) is also discussed. The optimization of the initial conditions for this system is also performed.
UR - http://www.scopus.com/inward/record.url?scp=84943266643&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84943266643&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:84943266643
SN - 0780312007
T3 - 1993 IEEE International Conference on Neural Networks
SP - 1742
EP - 1747
BT - 1993 IEEE International Conference on Neural Networks
PB - Publ by IEEE
T2 - 1993 IEEE International Conference on Neural Networks
Y2 - 28 March 1993 through 1 April 1993
ER -