Neural predictive control design for uncertain nonlinear systems

Wei Wu, Jun Xian Chang

Research output: Contribution to journalConference article

Abstract

In this paper, adaptive neural-network predictive control strategies for general nonlinear systems are presented. The system is described by an unknown NARMAX model and neuro model is used to on-line learn the system. Despite state/parameter estimation, the neural predictive control scheme associated with the constrained optimization framework is implemented in a straightforward manner. Through the Lyapunov stability analysis, the network weight adaptation rule is derived, and guarantees the minimum error between the neuro output and plant output. An unstable reactor system is given to demonstrate the effectiveness of the proposed control schemes.

Original languageEnglish
Pages (from-to)655-660
Number of pages6
JournalIFAC Proceedings Volumes (IFAC-PapersOnline)
Volume37
Issue number9
Publication statusPublished - 2004 Jan 1
Event7th IFAC Symposium on Dynamics and Control of Process Systems, DYCOPS 2004 - Cambridge, United States
Duration: 2004 Jul 52004 Jul 7

All Science Journal Classification (ASJC) codes

  • Control and Systems Engineering

Fingerprint Dive into the research topics of 'Neural predictive control design for uncertain nonlinear systems'. Together they form a unique fingerprint.

  • Cite this