Neuroanatomical and electrophysiological recovery in the contralateral intact cortex following transient focal cerebral ischemia in rats

Sheng Yang Huang, Chih Han Chang, Hsin Yi Hung, Yu Wen Lin, E. Jian Lee

Research output: Contribution to journalArticlepeer-review

6 Citations (Scopus)

Abstract

Objectives: Focal cerebral ischemia may induce synaptic, electrophysiological, and metabolic dysfunction in remote areas. We have shown that the remote dendritic spine density changes and electrophysiological diaschisis in the acute and subacute stages after stroke previously. Here, we further evaluated electrophysiological outcomes and synapto-dendritic plasticity in long-term recovery in the contralateral cortex following focal cerebral ischemia. Methods: Male Sprague–Dawley rats were subjected to intraluminal suture occlusion for 90 min or sham-occlusion. Somatosensory electrophysiological recordings (SSEPs) and neurobehavioral tests were recorded each day for 28 days. Postmortem brains were sectioned and subjected to Nissl staining and Golgi–Cox impregnation through a 28-day period following ischemic stroke. Results: In the ipsilateral cortex, infarct size in the cortex and striatum was decreased after the subacute stage; the brains showed reduced swelling in the cortex and stratum 3 days after ischemic insults. Dendritic spine density and SSEP amplitude decreased significantly during a 28-day recovery period. In the contralateral cortex, dendritic spine density and SSEP amplitude decreased significantly for 21 days after ischemic stroke, but recovered to baseline by day 28. The deterioration of the dendritic spine (density reduction) in the ischemic cortex was observed; however, this increased neuroplasticity in the contralateral cortex in the subacute stage. Discussion: Focal cerebral ischemia–reperfusion induces time-dependent reduction of dendritic spine density and electrophysiological depression in both the ipsilateral and contralateral cortices and intact brain. This neuroanatomical and electrophysiological evidence suggests that neuroplasticity and functional re-organization in the contralateral cortex is possible following focal cerebral ischemia.

Original languageEnglish
Pages (from-to)130-138
Number of pages9
JournalNeurological Research
Volume40
Issue number2
DOIs
Publication statusPublished - 2018 Feb 1

All Science Journal Classification (ASJC) codes

  • Neurology
  • Clinical Neurology

Fingerprint Dive into the research topics of 'Neuroanatomical and electrophysiological recovery in the contralateral intact cortex following transient focal cerebral ischemia in rats'. Together they form a unique fingerprint.

Cite this