Nitrate transporters and peptide transporters

Yi Fang Tsay, Chi Chou Chiu, Chyn Bey Tsai, Cheng Hsun Ho, Po Kai Hsu

Research output: Contribution to journalShort surveypeer-review

361 Citations (Scopus)

Abstract

In higher plants, two types of nitrate transporters, NRT1 and NRT2, have been identified. In Arabidopsis, there are 53 NRT1 genes and 7 NRT2 genes. NRT2 are high-affinity nitrate transporters, while most members of the NRT1 family are low-affinity nitrate transporters. The exception is CHL1 (AtNRT1.1), which is a dual-affinity nitrate transporter, its mode of action being switched by phosphorylation and dephosphorylation of threonine 101. Two of the NRT1 genes, CHL1 and AtNRT1.2, and two of the NRT2 genes, AtNRT2.1 and AtNRT2.2, are known to be involved in nitrate uptake. In addition, AtNRT1.4 is required for petiole nitrate storage. On the other hand, some members of the NRT1 family are dipeptide transporters, called PTRs, which transport a broad spectrum of di/tripeptides. In barley, HvPTR1, expressed in the plasma membrane of scutellar epithelial cells, is involved in mobilizing peptides, produced by hydrolysis of endosperm storage protein, to the developing embryo. In higher plants, there is another family of peptide transporters, called oligopeptide transporters (OPTs), which transport tetra/pentapeptides. In addition, some OPTs transport GSH, GSSH, GSH conjugates, phytochelatins, and metals.

Original languageEnglish
Pages (from-to)2290-2300
Number of pages11
JournalFEBS Letters
Volume581
Issue number12
DOIs
Publication statusPublished - 2007 May 25

All Science Journal Classification (ASJC) codes

  • Biophysics
  • Structural Biology
  • Biochemistry
  • Molecular Biology
  • Genetics
  • Cell Biology

Fingerprint Dive into the research topics of 'Nitrate transporters and peptide transporters'. Together they form a unique fingerprint.

Cite this