TY - JOUR
T1 - Non-abelian local invariant cycles
AU - Tsai, Yen Lung
AU - Xia, Eugene Z.
N1 - Copyright:
Copyright 2010 Elsevier B.V., All rights reserved.
PY - 2007/8
Y1 - 2007/8
N2 - Let f be a degeneration of Kähler manifolds. The local invariant cycle theorem states that for a smooth fiber of the degeneration, any coho-mology class, invariant under the monodromy action, comes from a global cohomology class. Instead of the classical cohomology, one may consider the non-abelian cohomology. This note demonstrates that the analogous non-abelian version of the local invariant cycle theorem does not hold if the first non-abelian cohomology is the moduli space (universal categorical quotient) of the representations of the fundamental group.
AB - Let f be a degeneration of Kähler manifolds. The local invariant cycle theorem states that for a smooth fiber of the degeneration, any coho-mology class, invariant under the monodromy action, comes from a global cohomology class. Instead of the classical cohomology, one may consider the non-abelian cohomology. This note demonstrates that the analogous non-abelian version of the local invariant cycle theorem does not hold if the first non-abelian cohomology is the moduli space (universal categorical quotient) of the representations of the fundamental group.
UR - http://www.scopus.com/inward/record.url?scp=77950639800&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77950639800&partnerID=8YFLogxK
U2 - 10.1090/S0002-9939-07-08843-0
DO - 10.1090/S0002-9939-07-08843-0
M3 - Article
AN - SCOPUS:77950639800
VL - 135
SP - 2365
EP - 2367
JO - Proceedings of the American Mathematical Society
JF - Proceedings of the American Mathematical Society
SN - 0002-9939
IS - 8
ER -