Non-contact detecting solution ionic strength in microfluidic channel utilizing GHz complementary split-ring resonator (CSRR)

Cheng Hua Li, Kuan Wei Chen, Chia Ming Hsu, Chin Lung Yang, Ker Chang Hsieh, Che Hsin Lin

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Citation (Scopus)

Abstract

This paper presents a novel microchip integrated with a GHz complementary split-ring resonator (CSRR) and a microfluidic channel for non-contact detecting the ionic strength of solutions. An upper C-ring resonator induced with an underneath linear micro-strip is used to generate the complementary resonance. The induced electromagnetic resonance is sensitive to surrounding material properties including complex permittivity and thickness of materials. The insertion loss of the GHz signal increases with the increasing material permittivity nearby the CSRR. Therefore, this technique is good to measure the ionic strength of solutions without using physical electrodes to contact the solutions. Results show that the developed CSRR chip is capable of detecting NaCl solutions of the concentration ranging in 10-3∼5.0 M with a sensitivity of 1.5 dB/M at high concentration range. The CSRR chip is also capable of distinguishing solutions of same concentration but different ionic charges. The developed CSRR chip has shown its potentials for remote monitoring the solution properties.

Original languageEnglish
Title of host publicationTRANSDUCERS 2017 - 19th International Conference on Solid-State Sensors, Actuators and Microsystems
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1915-1918
Number of pages4
ISBN (Electronic)9781538627310
DOIs
Publication statusPublished - 2017 Jul 26
Event19th International Conference on Solid-State Sensors, Actuators and Microsystems, TRANSDUCERS 2017 - Kaohsiung, Taiwan
Duration: 2017 Jun 182017 Jun 22

Publication series

NameTRANSDUCERS 2017 - 19th International Conference on Solid-State Sensors, Actuators and Microsystems

Other

Other19th International Conference on Solid-State Sensors, Actuators and Microsystems, TRANSDUCERS 2017
CountryTaiwan
CityKaohsiung
Period17-06-1817-06-22

All Science Journal Classification (ASJC) codes

  • Chemical Health and Safety
  • Instrumentation
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'Non-contact detecting solution ionic strength in microfluidic channel utilizing GHz complementary split-ring resonator (CSRR)'. Together they form a unique fingerprint.

Cite this