Nonuniform electro-osmotic flow on charged strips and its use in particle trapping

Shui Jin Liu, Shyh Hong Hwang, Hsien Hung Wei

Research output: Contribution to journalArticlepeer-review

6 Citations (Scopus)

Abstract

In this article, we investigate theoretically electro-osmotic flow set up by charged strips on an otherwise uncharged surface. Starting with a single-strip problem we demonstrate that for simple polynomial surface charge distributions several basic solutions can be derived in closed forms constituted by the analogous idea-flow solutions, which provide a more lucid way of revealing the flow features. These solutions reveal two types of flow topology: simple drainingin/ pumping-out streaming and a pair of microvortices for symmetric and antisymmetric surface charge distributions, respectively. For an arbitrary surface charge distribution, more complicated flow structures can be found by the superposition of these basic solutions. We further extend the analysis to two uniformly charged strips and show how the flow characteristics vary with the strips' dimensions and surface zeta potentials. The far-field velocity behavior is also asymptotically identified and indicates that the hydrodynamic nature of the flow is typically long-range. An application to particle trapping with electro-osmotic vortices is also investigated theoretically for the first time. We show that in collaboration with short-range attraction effects the trapping can be facilitated by symmetric vortices with a converging stagnation point, but not by asymmetric vortices.

Original languageEnglish
Pages (from-to)13776-13789
Number of pages14
JournalLangmuir
Volume24
Issue number23
DOIs
Publication statusPublished - 2008 Dec 2

All Science Journal Classification (ASJC) codes

  • Materials Science(all)
  • Condensed Matter Physics
  • Surfaces and Interfaces
  • Spectroscopy
  • Electrochemistry

Fingerprint Dive into the research topics of 'Nonuniform electro-osmotic flow on charged strips and its use in particle trapping'. Together they form a unique fingerprint.

Cite this