Novel autoregulatory function of hepatitis B virus M protein on surface gene expression

Tsurng Juhn Huang, Cheng Chan Lu, Jui Chen Tsai, Wei Jen Yao, Xuanyong Lu, Ming Derg Lai, Hsiao Sheng Liu, Ai Li Shiau

Research output: Contribution to journalArticlepeer-review

10 Citations (Scopus)


The hepatitis B virus surface gene consists of a single open reading frame divided into three coding regions: pre-S1, pre-S2, and S. By alternate translation at each of the three initiation codons, L, M, and S proteins can be synthesized. Studies have shown that M protein is not essential for viral replication, virion morphogenesis, or in vitro infectivity. In this study, we show that native M protein can regulate surface gene expression at the transcriptional level. The regulatory effect of M protein is mediated through the CCAAT box within the S promoter. Deletion mapping analysis indicated that the transactivating effect of M protein is mediated through amino acids 1-57 of M protein (the MHBsau domain), although its maximal transactivation activity coincides with that of the pre-S2 domain. This conclusion is supported by the fact that disruption of the putative V8 protease site at the pre-S2/S domain junction not only rendered M protein incapable of transactivating the S promoter but also inactivated its nuclear translocation potential. Immunoprecipitation and immunoblot experiments demonstrated that pre-S2 interacts with the three subunits of the CCAAT box-binding factor/nuclear factor Y, the cognate binding protein of the CCAAT box. These results demonstrate and define a novel regulatory role of M protein, which, under natural conditions, may undergo a proteolytic process to generate an MHBsau species that will be translocated inside the nucleus, where it will interact with the CCAAT box-binding factor to regulate surface gene expression. Because the CCAAT box is located at a fixed position within numerous promoters, these observations might provide a plausible explanation for hepatitis B virus-associated hepatocarciriogenesis.

Original languageEnglish
Pages (from-to)27742-27754
Number of pages13
JournalJournal of Biological Chemistry
Issue number30
Publication statusPublished - 2005 Jul 29

All Science Journal Classification (ASJC) codes

  • Biochemistry
  • Molecular Biology
  • Cell Biology


Dive into the research topics of 'Novel autoregulatory function of hepatitis B virus M protein on surface gene expression'. Together they form a unique fingerprint.

Cite this