TY - JOUR
T1 - Novel FLT3/AURK multikinase inhibitor is efficacious against sorafenib-refractory and sorafenib-resistant hepatocellular carcinoma
AU - Lai, You Liang
AU - Wang, Kai Hung
AU - Hsieh, Hsing Pang
AU - Yen, Wan Ching
N1 - Funding Information:
This study was supported by the Ministry of Science and Technology (MOST 107-2320-B-400-003), Taiwan. This work was also financially supported by the Center of Applied Nanomedicine, National Cheng Kung University from The Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by Ministry of Education (MOE) in Taiwan.
Publisher Copyright:
© 2022, The Author(s).
PY - 2022/12
Y1 - 2022/12
N2 - Background: Hepatocellular carcinoma (HCC) is the sixth most common type of cancer and has a high mortality rate worldwide. Sorafenib is the only systemic treatment demonstrating a statistically significant but modest overall survival benefit. We previously have identified the aurora kinases (AURKs) and FMS-like tyrosine kinase 3 (FLT3) multikinase inhibitor DBPR114 exhibiting broad spectrum anti-tumor effects in both leukemia and solid tumors. The purpose of this study was to evaluate the therapeutic potential of DBPR114 in the treatment of advanced HCC. Methods: Human HCC cell lines with histopathology/genetic background similar to human HCC tumors were used for in vitro and in vivo studies. Human umbilical vein endothelial cells (HUVEC) were used to evaluate the drug effect on endothelial tube formation. Western blotting, immunohistochemical staining, and mRNA sequencing were employed to investigate the mechanisms of drug action. Xenograft models of sorafenib-refractory and sorafenib-acquired resistant HCC were used to evaluate the tumor response to DBPR114. Results: DBPR114 was active against HCC tumor cell proliferation independent of p53 alteration status and tumor grade in vitro. DBPR114-mediated growth inhibition in HCC cells was associated with apoptosis induction, cell cycle arrest, and polyploidy formation. Further analysis indicated that DBPR114 reduced the phosphorylation levels of AURKs and its substrate histone H3. Moreover, the levels of several active-state receptor tyrosine kinases were downregulated by DBPR114, verifying the mechanisms of DBPR114 action as a multikinase inhibitor in HCC cells. DBPR114 also exhibited anti-angiogenic effect, as demonstrated by inhibiting tumor formation in HUVEC cells. In vivo, DBPR114 induced statistically significant tumor growth inhibition compared with the vehicle control in multiple HCC tumor xenograft models. Histologic analysis revealed that the DBPR114 treatment reduced cell proliferation, and induced apoptotic cell death and multinucleated cell formation. Consistent with the histological findings, gene expression analysis revealed that DBPR114-modulated genes were mostly related to the G2/M checkpoint and mitotic spindle assembly. DBPR114 was efficacious against sorafenib-intrinsic and -acquired resistant HCC tumors. Notably, DBPR114 significantly delayed posttreatment tumor regrowth and prolonged survival compared with the regorafenib group. Conclusion: Our results indicated that targeting AURK signaling could be a new effective molecular-targeted agent in the treatment of patients with HCC.
AB - Background: Hepatocellular carcinoma (HCC) is the sixth most common type of cancer and has a high mortality rate worldwide. Sorafenib is the only systemic treatment demonstrating a statistically significant but modest overall survival benefit. We previously have identified the aurora kinases (AURKs) and FMS-like tyrosine kinase 3 (FLT3) multikinase inhibitor DBPR114 exhibiting broad spectrum anti-tumor effects in both leukemia and solid tumors. The purpose of this study was to evaluate the therapeutic potential of DBPR114 in the treatment of advanced HCC. Methods: Human HCC cell lines with histopathology/genetic background similar to human HCC tumors were used for in vitro and in vivo studies. Human umbilical vein endothelial cells (HUVEC) were used to evaluate the drug effect on endothelial tube formation. Western blotting, immunohistochemical staining, and mRNA sequencing were employed to investigate the mechanisms of drug action. Xenograft models of sorafenib-refractory and sorafenib-acquired resistant HCC were used to evaluate the tumor response to DBPR114. Results: DBPR114 was active against HCC tumor cell proliferation independent of p53 alteration status and tumor grade in vitro. DBPR114-mediated growth inhibition in HCC cells was associated with apoptosis induction, cell cycle arrest, and polyploidy formation. Further analysis indicated that DBPR114 reduced the phosphorylation levels of AURKs and its substrate histone H3. Moreover, the levels of several active-state receptor tyrosine kinases were downregulated by DBPR114, verifying the mechanisms of DBPR114 action as a multikinase inhibitor in HCC cells. DBPR114 also exhibited anti-angiogenic effect, as demonstrated by inhibiting tumor formation in HUVEC cells. In vivo, DBPR114 induced statistically significant tumor growth inhibition compared with the vehicle control in multiple HCC tumor xenograft models. Histologic analysis revealed that the DBPR114 treatment reduced cell proliferation, and induced apoptotic cell death and multinucleated cell formation. Consistent with the histological findings, gene expression analysis revealed that DBPR114-modulated genes were mostly related to the G2/M checkpoint and mitotic spindle assembly. DBPR114 was efficacious against sorafenib-intrinsic and -acquired resistant HCC tumors. Notably, DBPR114 significantly delayed posttreatment tumor regrowth and prolonged survival compared with the regorafenib group. Conclusion: Our results indicated that targeting AURK signaling could be a new effective molecular-targeted agent in the treatment of patients with HCC.
UR - http://www.scopus.com/inward/record.url?scp=85123395148&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85123395148&partnerID=8YFLogxK
U2 - 10.1186/s12929-022-00788-0
DO - 10.1186/s12929-022-00788-0
M3 - Article
C2 - 35062934
AN - SCOPUS:85123395148
SN - 1021-7770
VL - 29
JO - Journal of biomedical science
JF - Journal of biomedical science
IS - 1
M1 - 5
ER -