TY - JOUR
T1 - Novel gallium phosphate framework encapsulating trinuclear Mn3(H2O)6O8 cluster
T2 - Hydrothermal synthesis and characterization of Mn3(H2O)6Ga4(PO4)6
AU - Hsu, Kuei Fang
AU - Wang, Sue Lein
PY - 2000/4/17
Y1 - 2000/4/17
N2 - A new manganese gallium phosphate, Mn3(H2O)6Ga4(PO4)6, has been synthesized under hydrothermal conditions at 150 °C and characterized by single-crystal X-ray diffraction, thermogravimetric analysis, magnetic susceptibility, and electron paramagnetic resonance (EPR) spectroscopy. It crystallized in the monoclinic space group, P21/n, with a = 8.9468(4) Å, b = 10.1481(5) Å, c = 13.5540(7) Å, β = 108.249(1)°, and Z = 2. The compound is unusual in that it is not only the first nonorganically templated MnGaPO phase but also the first instance where edge-shared trinuclear manganese-oxygen clusters are encapsulated in a metal phosphate lattice. The trimer involves a central Mn(H2O)4O2 octahedron, which links to two Mn (H2O)2O4 octahedra at trans edges. The Mn3(H2O)6O8 clusters reside in tunnels built from GaO5 trigonal bipyramids and PO4 tetrahedra. Our magnetic study revealed that superexchange interactions occurred between the neighboring Mn(II) centers. A good fit of the magnetic susceptibility data for the isolated trimers was obtained by using a derived expression based on Van Vleck's equation. Unlike all existing linear trinuclear Mn(II) complexes, the χ(M)T product in the range 8-4 K remains at a constant value corresponding to one spin S = 5/2 per three Mn(II) centers. The Curie behavior at such low temperatures has been confirmed by EPR data. According to the thermogravimetric analysis/differential thermal analysis (TGA/ DTA) results, the title compound is thermally stable up to ca. 200 °C.
AB - A new manganese gallium phosphate, Mn3(H2O)6Ga4(PO4)6, has been synthesized under hydrothermal conditions at 150 °C and characterized by single-crystal X-ray diffraction, thermogravimetric analysis, magnetic susceptibility, and electron paramagnetic resonance (EPR) spectroscopy. It crystallized in the monoclinic space group, P21/n, with a = 8.9468(4) Å, b = 10.1481(5) Å, c = 13.5540(7) Å, β = 108.249(1)°, and Z = 2. The compound is unusual in that it is not only the first nonorganically templated MnGaPO phase but also the first instance where edge-shared trinuclear manganese-oxygen clusters are encapsulated in a metal phosphate lattice. The trimer involves a central Mn(H2O)4O2 octahedron, which links to two Mn (H2O)2O4 octahedra at trans edges. The Mn3(H2O)6O8 clusters reside in tunnels built from GaO5 trigonal bipyramids and PO4 tetrahedra. Our magnetic study revealed that superexchange interactions occurred between the neighboring Mn(II) centers. A good fit of the magnetic susceptibility data for the isolated trimers was obtained by using a derived expression based on Van Vleck's equation. Unlike all existing linear trinuclear Mn(II) complexes, the χ(M)T product in the range 8-4 K remains at a constant value corresponding to one spin S = 5/2 per three Mn(II) centers. The Curie behavior at such low temperatures has been confirmed by EPR data. According to the thermogravimetric analysis/differential thermal analysis (TGA/ DTA) results, the title compound is thermally stable up to ca. 200 °C.
UR - http://www.scopus.com/inward/record.url?scp=0034678234&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0034678234&partnerID=8YFLogxK
U2 - 10.1021/ic991340s
DO - 10.1021/ic991340s
M3 - Article
C2 - 12526567
AN - SCOPUS:0034678234
SN - 0020-1669
VL - 39
SP - 1773
EP - 1778
JO - Inorganic Chemistry
JF - Inorganic Chemistry
IS - 8
ER -