Novel gallium phosphate framework encapsulating trinuclear Mn3(H2O)6O8 cluster: Hydrothermal synthesis and characterization of Mn3(H2O)6Ga4(PO4)6

Kuei Fang Hsu, Sue Lein Wang

Research output: Contribution to journalArticle

50 Citations (Scopus)

Abstract

A new manganese gallium phosphate, Mn3(H2O)6Ga4(PO4)6, has been synthesized under hydrothermal conditions at 150 °C and characterized by single-crystal X-ray diffraction, thermogravimetric analysis, magnetic susceptibility, and electron paramagnetic resonance (EPR) spectroscopy. It crystallized in the monoclinic space group, P21/n, with a = 8.9468(4) Å, b = 10.1481(5) Å, c = 13.5540(7) Å, β = 108.249(1)°, and Z = 2. The compound is unusual in that it is not only the first nonorganically templated MnGaPO phase but also the first instance where edge-shared trinuclear manganese-oxygen clusters are encapsulated in a metal phosphate lattice. The trimer involves a central Mn(H2O)4O2 octahedron, which links to two Mn (H2O)2O4 octahedra at trans edges. The Mn3(H2O)6O8 clusters reside in tunnels built from GaO5 trigonal bipyramids and PO4 tetrahedra. Our magnetic study revealed that superexchange interactions occurred between the neighboring Mn(II) centers. A good fit of the magnetic susceptibility data for the isolated trimers was obtained by using a derived expression based on Van Vleck's equation. Unlike all existing linear trinuclear Mn(II) complexes, the χ(M)T product in the range 8-4 K remains at a constant value corresponding to one spin S = 5/2 per three Mn(II) centers. The Curie behavior at such low temperatures has been confirmed by EPR data. According to the thermogravimetric analysis/differential thermal analysis (TGA/ DTA) results, the title compound is thermally stable up to ca. 200 °C.

Original languageEnglish
Pages (from-to)1773-1778
Number of pages6
JournalInorganic Chemistry
Volume39
Issue number8
DOIs
Publication statusPublished - 2000 Apr 17

All Science Journal Classification (ASJC) codes

  • Physical and Theoretical Chemistry
  • Inorganic Chemistry

Fingerprint Dive into the research topics of 'Novel gallium phosphate framework encapsulating trinuclear Mn<sub>3</sub>(H<sub>2</sub>O)<sub>6</sub>O<sub>8</sub> cluster: Hydrothermal synthesis and characterization of Mn<sub>3</sub>(H<sub>2</sub>O)<sub>6</sub>Ga<sub>4</sub>(PO<sub>4</sub>)<sub>6</sub>'. Together they form a unique fingerprint.

Cite this