Abstract
Three spiro-acridine-fluorene based hole transporting materials (HTMs), namely CW3, CW4 and CW5, are employed in the fabrication of organic-inorganic hybrid perovskite solar cells. The corresponding mesoscopic TiO2/CH3NH3PbI3/HTM devices are investigated and compared with that made with commercial spiro-OMeTAD. The best conversion efficiency of 16.56% is achieved for CW4 in the presence of tBp and Li-TFSI as additives and without a cobalt dopant. The performances of CW4 are further examined in terms of conductivity, mobility, morphology, and stability to show its potential as an alternative HTM.
Original language | English |
---|---|
Pages (from-to) | 15518-15521 |
Number of pages | 4 |
Journal | Chemical Communications |
Volume | 51 |
Issue number | 85 |
DOIs | |
Publication status | Published - 2015 |
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- General Chemistry
- Ceramics and Composites
- Metals and Alloys
- Materials Chemistry
- Surfaces, Coatings and Films
- Catalysis