Abstract
The rising demand for energy storage spurs research on supercapacitor materials, valued for high-power density and long-term cycling, vital in industries. Among two-dimensional materials, MXene, with a general formula of Mn+1XnTx, where M represents early transition metals, X indicates C and/or N, Tx represents functionalized surface groups, and n = 1, 2, or 3, stands out as an ideal candidate for energy storage applications. Here, for the first time, we report the use of a Lewis acid, boron trifluoride (BF3), as an electron-deficient etchant in a sulfuric acid (H2SO4) solution for etching aluminum from the model system Ti3AlC2 MAX (M: transition metals, A: Al, X: carbon.), resulting in the formation of B-doped Ti3C2Tx MXene. Ex-Situ electrochemical X-ray diffraction (XRD) analysis showed reversible (002) plane changes in B-doped Ti3C2Tx MXene, from 5.72° to 7.0°, indicating ions intercalation and deintercalation, a first-time demonstration of significant ion transportation. Such fundamental insight determines that the specific capacitance of B-doped Ti3C2Tx MXene has found to be 396 F/g at current density of 1 A/g. This research introduces a novel synthesis approach aimed at understanding microstructural transformations of B-doped Ti3C2Tx MXene during electrochemical processes. This contributes to the advancement of MXene-based materials for future electrochemical applications.
Original language | English |
---|---|
Article number | 235044 |
Journal | Journal of Power Sources |
Volume | 615 |
DOIs | |
Publication status | Published - 2024 Sept 30 |
All Science Journal Classification (ASJC) codes
- Renewable Energy, Sustainability and the Environment
- Energy Engineering and Power Technology
- Physical and Theoretical Chemistry
- Electrical and Electronic Engineering