Numerical study of ultrashort-optical-feedback-enhanced photonic microwave generation using optically injected semiconductor lasers at period-one nonlinear dynamics

Kai Hung Lo, Sheng Kwang Hwang, Silvano Donati

Research output: Contribution to journalArticlepeer-review

29 Citations (Scopus)

Abstract

This study numerically investigates the enhancement of photonic microwave generation using an optically injected semiconductor laser operating at period-one (P1) nonlinear dynamics through ultrashort optical feedback. For the purpose of practical applications where system miniaturization is generally preferred, a feedback delay time that is one to two orders of magnitude shorter than the relaxation resonance period of a typical laser is emphasized. Various dynamical states that are more complicated than the P1 dynamics can be excited under a number of ultrashort optical feedback conditions. Within the range of the P1 dynamics, on one hand, the frequency of the P1 microwave oscillation can be greatly enhanced by up to more than three folds. Generally speaking, the microwave frequency enhances with the optical feedback power and phase, while it varies saw-wise with the optical feedback delay time. On the other hand, the purity of the P1 microwave oscillation can be highly improved by up to more than three orders of magnitude. In general, the microwave purity improves with the optical feedback power and delay time, while it only varies within an order of magnitude with the optical feedback phase. These results suggest that the ultrashort optical feedback provides the optically injected laser system with an extra degree of freedom to manipulate/improve the characteristics of the P1 microwave oscillation without changing the optical injection condition.

Original languageEnglish
Pages (from-to)31595-31611
Number of pages17
JournalOptics Express
Volume25
Issue number25
DOIs
Publication statusPublished - 2017 Dec 11

All Science Journal Classification (ASJC) codes

  • Atomic and Molecular Physics, and Optics

Fingerprint

Dive into the research topics of 'Numerical study of ultrashort-optical-feedback-enhanced photonic microwave generation using optically injected semiconductor lasers at period-one nonlinear dynamics'. Together they form a unique fingerprint.

Cite this