Abstract
We present CoTe2 as a type-II Dirac semimetal supporting Lorentz-symmetry violating Dirac fermions in the vicinity of the Fermi energy. By combining first-principles ab initio calculations with experimental angle-resolved photoemission spectroscopy results, we show CoTe2 hosts a pair of type-II Dirac fermions around 90 meV above the Fermi energy. In addition to the bulk Dirac fermions, we find several topological band inversions in bulk CoTe2, which gives rise to a ladder of spin-polarized surface states over a wide range of energies. In contrast to the surface states which typically display Rashba-type in-plane spin splitting, we find that CoTe2 hosts interesting out-of-plane spin polarization as well. Our work establishes CoTe2 as a potential candidate for the exploration of Dirac fermiology and applications in spintronic devices, infrared plasmonics, and ultrafast optoelectronics.
Original language | English |
---|---|
Article number | 085406 |
Journal | Physical Review B |
Volume | 107 |
Issue number | 8 |
DOIs | |
Publication status | Published - 2023 Feb 15 |
All Science Journal Classification (ASJC) codes
- Electronic, Optical and Magnetic Materials
- Condensed Matter Physics