Oct4 upregulates osteopontin via Egr1 and is associated with poor outcome in human lung cancer

Yin Hsun Feng, Yu Chu Su, Shuo Fu Lin, Pey Ru Lin, Chao Liang Wu, Chao Ling Tung, Chien Feng Li, Gia Shing Shieh, Ai Li Shiau

Research output: Contribution to journalArticlepeer-review

25 Citations (Scopus)

Abstract

Background: Roles of cancer stem cells and early growth response gene 1 (Egr1) in carcinogenesis have been extensively studied in lung cancer. However, the role of Egr1 in the metastasis of lung cancer remains undetermined, especially in regard to stem cell-related pathways. Methods: Egr1, osteopontin (OPN) and Oct4 expression in human lung cancer was determined by performing immunohistochemistry. Immunoblotting, ELISA, luciferase reporter assay, chromatin immunoprecipitation assay and RT-PCR were performed to validate the regulation of Oct4-Egr1-OPN axis. Moreover, the effect of Oct4-Egr1-OPN axis on lung cancer progression was evaluated by cell migration assay and mice study. Results: We detected Oct4, Egr1, and OPN expression in clinical specimens from 79 lung cancer patients, including 72 adenocarcinomas and 7 squamous cell carcinomas. High expression of Oct4, Egr1, and OPN accounted for 53, 51, and 57% of the patients, respectively. All of the three biomarkers were positively correlated in clinical human lung cancer. Patients with high expression of OPN were significantly associated with shorter disease-free survivals than those with low expression of OPN (p < 0.05). In lung cancer cells, Oct4 transactivated the Egr1 promoter and upregulated Egr1 expression. In a human lung cancer xenograft model, Oct4-overexpressing tumors expressed elevated levels of Egr1. Furthermore, overexpression of Oct4 in lung cancer cells increased the metastatic potential. Conclusions: Egr1 exerts a promoting effect on cancer metastasis in Oct4-overexpressing lung cancer. Thus, therapeutic strategies targeting the Oct4/Egr1/OPN axis may be further explored for the treatment of lung cancer, especially when lung cancer is refractory to conventional treatment due to cancer stem cells.

Original languageEnglish
Article number791
JournalBMC cancer
Volume19
Issue number1
DOIs
Publication statusPublished - 2019 Aug 9

All Science Journal Classification (ASJC) codes

  • Oncology
  • Genetics
  • Cancer Research

Fingerprint

Dive into the research topics of 'Oct4 upregulates osteopontin via Egr1 and is associated with poor outcome in human lung cancer'. Together they form a unique fingerprint.

Cite this