TY - JOUR
T1 - Optical behaviour of photoimageable cholesteric liquid crystal cells with various novel chiral compounds
AU - Liu, Jui Hsiang
AU - Yang, Po Chih
N1 - Funding Information:
The authors would like to thank the National Science Council (NSC) of the Republic of China (Taiwan) for financial support of this research under Contract No. NSC 92-2216-E006-003.
PY - 2005/5
Y1 - 2005/5
N2 - In theory, both polarity and steric hindrance are basic factors which affect molecular interactions. To investigate the optical properties and steric structures of chiral compounds having different chiral moieties which affect the wavelength of light reflection in liquid crystal (LC) cells, a series of novel chiral compounds and azobenzene derivatives were synthesized. The liquid crystalline phases of the compounds were identified using small angle X-ray diffraction, differential scanning calorimetry and polarizing optical microscopy. Cholesteric LC cells with various synthesized chiral dopants which selectively reflect visible light were first prepared, the photochemical switching behaviour of colours was then investigated, with special reference to the change in transmittance in cholesteric LC cells containing an azobenzene derivative as a photoisomerizable guest molecule. Reversible isomerization of azobenzene molecules occurred in the cholesteric systems, resulting in a depression of TChI and a shift of the selectively reflected wavelength. We discuss the photochemically driven change in the helical pitch of the cholesteric LCs with respect to structural effects involving the chiral moieties. Molecular interactions caused by the added dopants, reliability and stability of the photoisomerization, and UV irradiation effects on the cholesteric LC cells were also investigated. A real image was recorded through a mask on a cholesteric LC cell fabricated in this investigation.
AB - In theory, both polarity and steric hindrance are basic factors which affect molecular interactions. To investigate the optical properties and steric structures of chiral compounds having different chiral moieties which affect the wavelength of light reflection in liquid crystal (LC) cells, a series of novel chiral compounds and azobenzene derivatives were synthesized. The liquid crystalline phases of the compounds were identified using small angle X-ray diffraction, differential scanning calorimetry and polarizing optical microscopy. Cholesteric LC cells with various synthesized chiral dopants which selectively reflect visible light were first prepared, the photochemical switching behaviour of colours was then investigated, with special reference to the change in transmittance in cholesteric LC cells containing an azobenzene derivative as a photoisomerizable guest molecule. Reversible isomerization of azobenzene molecules occurred in the cholesteric systems, resulting in a depression of TChI and a shift of the selectively reflected wavelength. We discuss the photochemically driven change in the helical pitch of the cholesteric LCs with respect to structural effects involving the chiral moieties. Molecular interactions caused by the added dopants, reliability and stability of the photoisomerization, and UV irradiation effects on the cholesteric LC cells were also investigated. A real image was recorded through a mask on a cholesteric LC cell fabricated in this investigation.
UR - http://www.scopus.com/inward/record.url?scp=27844458976&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=27844458976&partnerID=8YFLogxK
U2 - 10.1080/02678290500117654
DO - 10.1080/02678290500117654
M3 - Article
AN - SCOPUS:27844458976
SN - 0267-8292
VL - 32
SP - 539
EP - 551
JO - Liquid Crystals
JF - Liquid Crystals
IS - 5
ER -