Optical behaviour of photoimageable cholesteric liquid crystal cells with various novel chiral compounds

Jui-Hsiang Liu, Po Chih Yang

Research output: Contribution to journalArticle

17 Citations (Scopus)

Abstract

In theory, both polarity and steric hindrance are basic factors which affect molecular interactions. To investigate the optical properties and steric structures of chiral compounds having different chiral moieties which affect the wavelength of light reflection in liquid crystal (LC) cells, a series of novel chiral compounds and azobenzene derivatives were synthesized. The liquid crystalline phases of the compounds were identified using small angle X-ray diffraction, differential scanning calorimetry and polarizing optical microscopy. Cholesteric LC cells with various synthesized chiral dopants which selectively reflect visible light were first prepared, the photochemical switching behaviour of colours was then investigated, with special reference to the change in transmittance in cholesteric LC cells containing an azobenzene derivative as a photoisomerizable guest molecule. Reversible isomerization of azobenzene molecules occurred in the cholesteric systems, resulting in a depression of TChI and a shift of the selectively reflected wavelength. We discuss the photochemically driven change in the helical pitch of the cholesteric LCs with respect to structural effects involving the chiral moieties. Molecular interactions caused by the added dopants, reliability and stability of the photoisomerization, and UV irradiation effects on the cholesteric LC cells were also investigated. A real image was recorded through a mask on a cholesteric LC cell fabricated in this investigation.

Original languageEnglish
Pages (from-to)539-551
Number of pages13
JournalLiquid Crystals
Volume32
Issue number5
DOIs
Publication statusPublished - 2005 May 1

Fingerprint

Cholesteric liquid crystals
Azobenzene
liquid crystals
Molecular interactions
cells
molecular interactions
Doping (additives)
Light reflection
Derivatives
Photoisomerization
Liquid Crystals
Wavelength
Molecules
Isomerization
Liquid crystals
Optical microscopy
Masks
Differential scanning calorimetry
Optical properties
wavelengths

All Science Journal Classification (ASJC) codes

  • Condensed Matter Physics

Cite this

@article{bdf14a218d4d4c5e9e9de09c2fa870bb,
title = "Optical behaviour of photoimageable cholesteric liquid crystal cells with various novel chiral compounds",
abstract = "In theory, both polarity and steric hindrance are basic factors which affect molecular interactions. To investigate the optical properties and steric structures of chiral compounds having different chiral moieties which affect the wavelength of light reflection in liquid crystal (LC) cells, a series of novel chiral compounds and azobenzene derivatives were synthesized. The liquid crystalline phases of the compounds were identified using small angle X-ray diffraction, differential scanning calorimetry and polarizing optical microscopy. Cholesteric LC cells with various synthesized chiral dopants which selectively reflect visible light were first prepared, the photochemical switching behaviour of colours was then investigated, with special reference to the change in transmittance in cholesteric LC cells containing an azobenzene derivative as a photoisomerizable guest molecule. Reversible isomerization of azobenzene molecules occurred in the cholesteric systems, resulting in a depression of TChI and a shift of the selectively reflected wavelength. We discuss the photochemically driven change in the helical pitch of the cholesteric LCs with respect to structural effects involving the chiral moieties. Molecular interactions caused by the added dopants, reliability and stability of the photoisomerization, and UV irradiation effects on the cholesteric LC cells were also investigated. A real image was recorded through a mask on a cholesteric LC cell fabricated in this investigation.",
author = "Jui-Hsiang Liu and Yang, {Po Chih}",
year = "2005",
month = "5",
day = "1",
doi = "10.1080/02678290500117654",
language = "English",
volume = "32",
pages = "539--551",
journal = "Liquid Crystals",
issn = "0267-8292",
publisher = "Taylor and Francis Ltd.",
number = "5",

}

Optical behaviour of photoimageable cholesteric liquid crystal cells with various novel chiral compounds. / Liu, Jui-Hsiang; Yang, Po Chih.

In: Liquid Crystals, Vol. 32, No. 5, 01.05.2005, p. 539-551.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Optical behaviour of photoimageable cholesteric liquid crystal cells with various novel chiral compounds

AU - Liu, Jui-Hsiang

AU - Yang, Po Chih

PY - 2005/5/1

Y1 - 2005/5/1

N2 - In theory, both polarity and steric hindrance are basic factors which affect molecular interactions. To investigate the optical properties and steric structures of chiral compounds having different chiral moieties which affect the wavelength of light reflection in liquid crystal (LC) cells, a series of novel chiral compounds and azobenzene derivatives were synthesized. The liquid crystalline phases of the compounds were identified using small angle X-ray diffraction, differential scanning calorimetry and polarizing optical microscopy. Cholesteric LC cells with various synthesized chiral dopants which selectively reflect visible light were first prepared, the photochemical switching behaviour of colours was then investigated, with special reference to the change in transmittance in cholesteric LC cells containing an azobenzene derivative as a photoisomerizable guest molecule. Reversible isomerization of azobenzene molecules occurred in the cholesteric systems, resulting in a depression of TChI and a shift of the selectively reflected wavelength. We discuss the photochemically driven change in the helical pitch of the cholesteric LCs with respect to structural effects involving the chiral moieties. Molecular interactions caused by the added dopants, reliability and stability of the photoisomerization, and UV irradiation effects on the cholesteric LC cells were also investigated. A real image was recorded through a mask on a cholesteric LC cell fabricated in this investigation.

AB - In theory, both polarity and steric hindrance are basic factors which affect molecular interactions. To investigate the optical properties and steric structures of chiral compounds having different chiral moieties which affect the wavelength of light reflection in liquid crystal (LC) cells, a series of novel chiral compounds and azobenzene derivatives were synthesized. The liquid crystalline phases of the compounds were identified using small angle X-ray diffraction, differential scanning calorimetry and polarizing optical microscopy. Cholesteric LC cells with various synthesized chiral dopants which selectively reflect visible light were first prepared, the photochemical switching behaviour of colours was then investigated, with special reference to the change in transmittance in cholesteric LC cells containing an azobenzene derivative as a photoisomerizable guest molecule. Reversible isomerization of azobenzene molecules occurred in the cholesteric systems, resulting in a depression of TChI and a shift of the selectively reflected wavelength. We discuss the photochemically driven change in the helical pitch of the cholesteric LCs with respect to structural effects involving the chiral moieties. Molecular interactions caused by the added dopants, reliability and stability of the photoisomerization, and UV irradiation effects on the cholesteric LC cells were also investigated. A real image was recorded through a mask on a cholesteric LC cell fabricated in this investigation.

UR - http://www.scopus.com/inward/record.url?scp=27844458976&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=27844458976&partnerID=8YFLogxK

U2 - 10.1080/02678290500117654

DO - 10.1080/02678290500117654

M3 - Article

VL - 32

SP - 539

EP - 551

JO - Liquid Crystals

JF - Liquid Crystals

SN - 0267-8292

IS - 5

ER -