Optical path length and its jacobian matrix with respect to system variable vector

Research output: Chapter in Book/Report/Conference proceedingChapter

Original languageEnglish
Title of host publicationNew Computation Methods for Geometrical Optics
PublisherSpringer Verlag
Pages187-202
Number of pages16
ISBN (Print)9789814451789
DOIs
Publication statusPublished - 2014 Jan 1

Publication series

NameSpringer Series in Optical Sciences
Volume178
ISSN (Print)0342-4111
ISSN (Electronic)1556-1534

Fingerprint

Jacobian matrices

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials

Cite this

Lin, P-D. (2014). Optical path length and its jacobian matrix with respect to system variable vector. In New Computation Methods for Geometrical Optics (pp. 187-202). (Springer Series in Optical Sciences; Vol. 178). Springer Verlag. https://doi.org/10.1007/978-981-4451-79-6_7
Lin, Psang-Dain. / Optical path length and its jacobian matrix with respect to system variable vector. New Computation Methods for Geometrical Optics. Springer Verlag, 2014. pp. 187-202 (Springer Series in Optical Sciences).
@inbook{96e819d050f748e695ea8de152f0f0ee,
title = "Optical path length and its jacobian matrix with respect to system variable vector",
author = "Psang-Dain Lin",
year = "2014",
month = "1",
day = "1",
doi = "10.1007/978-981-4451-79-6_7",
language = "English",
isbn = "9789814451789",
series = "Springer Series in Optical Sciences",
publisher = "Springer Verlag",
pages = "187--202",
booktitle = "New Computation Methods for Geometrical Optics",
address = "Germany",

}

Lin, P-D 2014, Optical path length and its jacobian matrix with respect to system variable vector. in New Computation Methods for Geometrical Optics. Springer Series in Optical Sciences, vol. 178, Springer Verlag, pp. 187-202. https://doi.org/10.1007/978-981-4451-79-6_7

Optical path length and its jacobian matrix with respect to system variable vector. / Lin, Psang-Dain.

New Computation Methods for Geometrical Optics. Springer Verlag, 2014. p. 187-202 (Springer Series in Optical Sciences; Vol. 178).

Research output: Chapter in Book/Report/Conference proceedingChapter

TY - CHAP

T1 - Optical path length and its jacobian matrix with respect to system variable vector

AU - Lin, Psang-Dain

PY - 2014/1/1

Y1 - 2014/1/1

UR - http://www.scopus.com/inward/record.url?scp=84959186540&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84959186540&partnerID=8YFLogxK

U2 - 10.1007/978-981-4451-79-6_7

DO - 10.1007/978-981-4451-79-6_7

M3 - Chapter

AN - SCOPUS:84959186540

SN - 9789814451789

T3 - Springer Series in Optical Sciences

SP - 187

EP - 202

BT - New Computation Methods for Geometrical Optics

PB - Springer Verlag

ER -

Lin P-D. Optical path length and its jacobian matrix with respect to system variable vector. In New Computation Methods for Geometrical Optics. Springer Verlag. 2014. p. 187-202. (Springer Series in Optical Sciences). https://doi.org/10.1007/978-981-4451-79-6_7