Optimal design of baffles locations with interdigitated flow channels of a centimeter-scale proton exchange membrane fuel cell

Research output: Contribution to journalArticlepeer-review

31 Citations (Scopus)

Abstract

In the present study, the simplified conjugate-gradient method (SCGM) is combined with commercial CFD code to build an optimizer for designing the baffles locations with interdigitated channels of a centimeter-scale proton exchange membrane fuel cell (PEMFC). Using the optimizer, the locations of the baffles are adjusted toward the maximization of the average current density of the flow field. The approach is developed by using the commercial CFD code as the direct problem solver, which is able to provide the numerical solutions for the three-dimensional mass, momentum and species transport equations as well as to predict the electron conduction and proton migration taking place in a PEMFC. Results show that the optimal design process of the locations of the baffles can be completed by using the present optimization approach in just a finite number of iterations. The optimization process may lead to an appreciable increase by 14% in the power output from the fuel cell.

Original languageEnglish
Pages (from-to)732-743
Number of pages12
JournalInternational Journal of Heat and Mass Transfer
Volume53
Issue number4
DOIs
Publication statusPublished - 2010 Jan 1

All Science Journal Classification (ASJC) codes

  • Condensed Matter Physics
  • Mechanical Engineering
  • Fluid Flow and Transfer Processes

Fingerprint Dive into the research topics of 'Optimal design of baffles locations with interdigitated flow channels of a centimeter-scale proton exchange membrane fuel cell'. Together they form a unique fingerprint.

Cite this