Optimization of louvered-fin heat exchanger with variable louver angles

Jiin Yuh Jang, Chun Chung Chen

Research output: Contribution to journalArticlepeer-review

38 Citations (Scopus)


The optimization of the variable louver angle (Δθ) and initial louver angle (θi) for a louvered-fin heat exchanger was determined numerically using the conjugate gradient method. The area reduction ratio relative to a plain surface was the objective function to be maximized. A search for the optimal variable louver angle (Δθ) and initial louver angle (θi), in the ranges of +0°< Δθ < +4°and 18°< θi < 30°, respectively, was performed. The results show that the maximum area reduction ratios are 48.5%-55.2% for the optimal design of (Δθ, θi) at ReH = 133-1199 (Uin = 1.0-9.0 m/s). In order to validate the reliability of the numerical simulation procedure, a comparison of experimental and numerical simulation results was made with the scaled-up testing. This article shows the temperature for the scaled-up louvered fin as determined from infrared thermovision and numerical simulation, respectively. A comparison of images shows that both methods give similar temperature distributions across the entire louvered fin. In addition, it shows comparisons of j and f between the simulation and experimental results. The results show good agreements, with a maximum discrepancy of 12%.

Original languageEnglish
Pages (from-to)138-150
Number of pages13
JournalApplied Thermal Engineering
Publication statusPublished - 2015 Dec 5

All Science Journal Classification (ASJC) codes

  • Energy Engineering and Power Technology
  • Industrial and Manufacturing Engineering

Fingerprint Dive into the research topics of 'Optimization of louvered-fin heat exchanger with variable louver angles'. Together they form a unique fingerprint.

Cite this