Optimization of multilevel power adjustment in wireless sensor networks

Sheng Tzong Cheng, Mingzoo Wu

Research output: Contribution to journalArticle

8 Citations (Scopus)

Abstract

Restricted to the limited battery power of nodes, energy conservation becomes a critical design issue in wireless sensor networks (WSNs). Transmission with excess power not only reduces the lifetime of sensor nodes, but also introduces immoderate interference in the shared radio channel. It is ideal to transmit packets with just enough power. In this paper, we propose a multilevel power adjustment (MLPA) mechanism for WSNs to prolong the individual node lifetime and the overall network lifetime. The energy conservation is achieved by reducing the average transmission power. The analytical model is built for the MLPA mechanism enabled with k distinct power levels (k-LPA). Under a free space loss (path loss exponent γ=2) model, the closed-form expression of optimal power setting is derived and the average transmission power can be minimized as (k+1)/2k of original fixed power. For wireless environment other than the free space loss model (γ≠2), a recursive formula expression set is established to acquire the optimal power configuration and the minimum average transmission power, which is 2P/(γ+2) as k approaches infinity. Furthermore, to reduce the computing complexity and the effort of measuring path loss exponent, two approximated power configuration methods are proposed. The analytical results show that both the proposed approximate methods are near-optimal solutions for most of the wireless communication environments. It can be shown that lim∈ k→∞ P avg (k,γ)=lim∈ k→∞ P avg ∼I (k,γ)=lim∈ k→∞ P avg min∈ (k,γ)=2P/(γ+2).

Original languageEnglish
Pages (from-to)109-121
Number of pages13
JournalTelecommunication Systems
Volume42
Issue number1-2
DOIs
Publication statusPublished - 2009 Oct 1

Fingerprint

Wireless sensor networks
Power transmission
Energy conservation
Sensor nodes
Analytical models
Communication

All Science Journal Classification (ASJC) codes

  • Electrical and Electronic Engineering

Cite this

@article{7b34d7a38dc84730a57418b116627db6,
title = "Optimization of multilevel power adjustment in wireless sensor networks",
abstract = "Restricted to the limited battery power of nodes, energy conservation becomes a critical design issue in wireless sensor networks (WSNs). Transmission with excess power not only reduces the lifetime of sensor nodes, but also introduces immoderate interference in the shared radio channel. It is ideal to transmit packets with just enough power. In this paper, we propose a multilevel power adjustment (MLPA) mechanism for WSNs to prolong the individual node lifetime and the overall network lifetime. The energy conservation is achieved by reducing the average transmission power. The analytical model is built for the MLPA mechanism enabled with k distinct power levels (k-LPA). Under a free space loss (path loss exponent γ=2) model, the closed-form expression of optimal power setting is derived and the average transmission power can be minimized as (k+1)/2k of original fixed power. For wireless environment other than the free space loss model (γ≠2), a recursive formula expression set is established to acquire the optimal power configuration and the minimum average transmission power, which is 2P/(γ+2) as k approaches infinity. Furthermore, to reduce the computing complexity and the effort of measuring path loss exponent, two approximated power configuration methods are proposed. The analytical results show that both the proposed approximate methods are near-optimal solutions for most of the wireless communication environments. It can be shown that lim∈ k→∞ P avg ∼ (k,γ)=lim∈ k→∞ P avg ∼I (k,γ)=lim∈ k→∞ P avg min∈ (k,γ)=2P/(γ+2).",
author = "Cheng, {Sheng Tzong} and Mingzoo Wu",
year = "2009",
month = "10",
day = "1",
doi = "10.1007/s11235-009-9173-x",
language = "English",
volume = "42",
pages = "109--121",
journal = "Telecommunication Systems",
issn = "1018-4864",
publisher = "Springer Netherlands",
number = "1-2",

}

Optimization of multilevel power adjustment in wireless sensor networks. / Cheng, Sheng Tzong; Wu, Mingzoo.

In: Telecommunication Systems, Vol. 42, No. 1-2, 01.10.2009, p. 109-121.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Optimization of multilevel power adjustment in wireless sensor networks

AU - Cheng, Sheng Tzong

AU - Wu, Mingzoo

PY - 2009/10/1

Y1 - 2009/10/1

N2 - Restricted to the limited battery power of nodes, energy conservation becomes a critical design issue in wireless sensor networks (WSNs). Transmission with excess power not only reduces the lifetime of sensor nodes, but also introduces immoderate interference in the shared radio channel. It is ideal to transmit packets with just enough power. In this paper, we propose a multilevel power adjustment (MLPA) mechanism for WSNs to prolong the individual node lifetime and the overall network lifetime. The energy conservation is achieved by reducing the average transmission power. The analytical model is built for the MLPA mechanism enabled with k distinct power levels (k-LPA). Under a free space loss (path loss exponent γ=2) model, the closed-form expression of optimal power setting is derived and the average transmission power can be minimized as (k+1)/2k of original fixed power. For wireless environment other than the free space loss model (γ≠2), a recursive formula expression set is established to acquire the optimal power configuration and the minimum average transmission power, which is 2P/(γ+2) as k approaches infinity. Furthermore, to reduce the computing complexity and the effort of measuring path loss exponent, two approximated power configuration methods are proposed. The analytical results show that both the proposed approximate methods are near-optimal solutions for most of the wireless communication environments. It can be shown that lim∈ k→∞ P avg ∼ (k,γ)=lim∈ k→∞ P avg ∼I (k,γ)=lim∈ k→∞ P avg min∈ (k,γ)=2P/(γ+2).

AB - Restricted to the limited battery power of nodes, energy conservation becomes a critical design issue in wireless sensor networks (WSNs). Transmission with excess power not only reduces the lifetime of sensor nodes, but also introduces immoderate interference in the shared radio channel. It is ideal to transmit packets with just enough power. In this paper, we propose a multilevel power adjustment (MLPA) mechanism for WSNs to prolong the individual node lifetime and the overall network lifetime. The energy conservation is achieved by reducing the average transmission power. The analytical model is built for the MLPA mechanism enabled with k distinct power levels (k-LPA). Under a free space loss (path loss exponent γ=2) model, the closed-form expression of optimal power setting is derived and the average transmission power can be minimized as (k+1)/2k of original fixed power. For wireless environment other than the free space loss model (γ≠2), a recursive formula expression set is established to acquire the optimal power configuration and the minimum average transmission power, which is 2P/(γ+2) as k approaches infinity. Furthermore, to reduce the computing complexity and the effort of measuring path loss exponent, two approximated power configuration methods are proposed. The analytical results show that both the proposed approximate methods are near-optimal solutions for most of the wireless communication environments. It can be shown that lim∈ k→∞ P avg ∼ (k,γ)=lim∈ k→∞ P avg ∼I (k,γ)=lim∈ k→∞ P avg min∈ (k,γ)=2P/(γ+2).

UR - http://www.scopus.com/inward/record.url?scp=69549109992&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=69549109992&partnerID=8YFLogxK

U2 - 10.1007/s11235-009-9173-x

DO - 10.1007/s11235-009-9173-x

M3 - Article

AN - SCOPUS:69549109992

VL - 42

SP - 109

EP - 121

JO - Telecommunication Systems

JF - Telecommunication Systems

SN - 1018-4864

IS - 1-2

ER -