Parallel analysis of offshore wind turbine structures under ultimate loads

Shen Haw Ju, Yu Cheng Huang, Hsin Hsiang Hsu

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)

Abstract

This paper investigates efficient design of offshore wind turbine (OWT) support structures under ultimate loads and proposes three schemes to overcome excessive computer time due to many required external loads. The first is the assumption of a rigid support structure to find blade wind forces, so that these forces are only dependent on wind profiles, which limits different cases in the structural analyses. Since the blade information is often confidential in turbine companies, this two-stage analysis allows the hub force to be the input data for the support structure design. The second is using a few control loads to perform the steel design between the second and the second-last design cycles. The third is using parallel computational procedures, since all loading cases can be independently executed in different CPU cores and computers. The test cases, with 5044 loading cases, indicate that the proposed method is fully parallel and can complete the design procedures using a few personal computers within several days. Test cases include IEC 61400-3, tropical cyclone, and seismic loads; although there are many loads to be considered, steel design is governed by a limited number of load cases, which are discussed in this paper.

Original languageEnglish
Article number4708
JournalApplied Sciences (Switzerland)
Volume9
Issue number21
DOIs
Publication statusPublished - 2019 Nov 1

All Science Journal Classification (ASJC) codes

  • General Materials Science
  • Instrumentation
  • General Engineering
  • Process Chemistry and Technology
  • Computer Science Applications
  • Fluid Flow and Transfer Processes

Fingerprint

Dive into the research topics of 'Parallel analysis of offshore wind turbine structures under ultimate loads'. Together they form a unique fingerprint.

Cite this