Particle transport and energization associated with substorms

Sorin Zaharia, C. Z. Cheng, Jay R. Johnson

Research output: Contribution to journalArticlepeer-review

56 Citations (Scopus)

Abstract

Energetic particle flux enhancement events observed by satellites during substorms are studied by considering the interaction of particles with earthward propagating electromagnetic pulses of westward electric field and consistent magnetic field of localized radial and azimuthal extent in a background magnetic field. The energetic particle flux enhancement is mainly due to the betatron acceleration process: particles are swept by the earthward propagating electric field pulses via the ExB drift toward the Earth to higher magnetic field locations and are energized because of magnetic moment conservation. The most energized particles are those which stay in the pulse for the longest time and are swept the longest radial distance toward the Earth. Assuming a constant propagating velocity of the pulse, we obtain analytical solutions of particle orbits. We closely examine substorm energetic particle injection by computing the particle flux and comparing with geosynchronous satellite observations. Our results show that for pulse parameters leading to consistency with observed flux values, the bulk of the injected particles arrive from distances of less than 9 RE, which is closer to the Earth than the values obtained by the previous model (Li et al., 1998).

Original languageEnglish
Article number1999JA000407
Pages (from-to)18741-18752
Number of pages12
JournalJournal of Geophysical Research: Space Physics
Volume105
Issue numberA8
DOIs
Publication statusPublished - 2000 Aug 1

All Science Journal Classification (ASJC) codes

  • Geophysics
  • Forestry
  • Oceanography
  • Aquatic Science
  • Ecology
  • Water Science and Technology
  • Soil Science
  • Geochemistry and Petrology
  • Earth-Surface Processes
  • Atmospheric Science
  • Earth and Planetary Sciences (miscellaneous)
  • Space and Planetary Science
  • Palaeontology

Fingerprint Dive into the research topics of 'Particle transport and energization associated with substorms'. Together they form a unique fingerprint.

Cite this