TY - JOUR
T1 - Pax-2 and N-myc regulate epithelial cell proliferation and apoptosis in a positive autocrine feedback loop
AU - Zhang, Shao Ling
AU - Chen, Yun Wen
AU - Tran, Stella
AU - Liu, Fang
AU - Nestoridi, Eirini
AU - Hébert, Marie Josée
AU - Ingelfinger, Julie R.
PY - 2007/6
Y1 - 2007/6
N2 - Both paired homeo box-2 (Pax-2) and N-myc genes play pivotal roles in renal morphogenesis via their effects on cell proliferation and differentiation, but whether and how they interact have not been addressed. In the present study, we investigated such a potential interaction using embryonic renal cells in vitro. Mouse embryonic mesenchymal (MK4) cells stably transfected with Pax-2 cDNA in sense (+) or antisense (-) orientation were used for experiments. Pax-2 promoter activity was monitored by luciferase assay. Reactive oxygen species (ROS) generation, cell proliferation, and cell apoptosis were evaluated. We found that Pax-2 and N-myc gene expression were upregulated and downregulated in Pax-2 (+) and Pax-2 (-) stable transformants, respectively. ROS generation and apoptosis were significantly reduced both in Pax-2 (+) transformants compared with Pax-2 (-) transformants and in naïve MK4 cells cultured in either normal- (5 mM) or high-glucose (25 mM) medium. Transient transfection of N-myc cDNA into Pax-2 (-) stable transformants restored Pax-2 gene expression and prevented ROS generation induced by high glucose. Our data demonstrate that Pax-2 gene overexpression prevents hyperglycemia-induced apoptosis, and N-myc appears to provide a positive autocrine feedback on Pax-2 gene expression in embryonic mesenchymal cells.
AB - Both paired homeo box-2 (Pax-2) and N-myc genes play pivotal roles in renal morphogenesis via their effects on cell proliferation and differentiation, but whether and how they interact have not been addressed. In the present study, we investigated such a potential interaction using embryonic renal cells in vitro. Mouse embryonic mesenchymal (MK4) cells stably transfected with Pax-2 cDNA in sense (+) or antisense (-) orientation were used for experiments. Pax-2 promoter activity was monitored by luciferase assay. Reactive oxygen species (ROS) generation, cell proliferation, and cell apoptosis were evaluated. We found that Pax-2 and N-myc gene expression were upregulated and downregulated in Pax-2 (+) and Pax-2 (-) stable transformants, respectively. ROS generation and apoptosis were significantly reduced both in Pax-2 (+) transformants compared with Pax-2 (-) transformants and in naïve MK4 cells cultured in either normal- (5 mM) or high-glucose (25 mM) medium. Transient transfection of N-myc cDNA into Pax-2 (-) stable transformants restored Pax-2 gene expression and prevented ROS generation induced by high glucose. Our data demonstrate that Pax-2 gene overexpression prevents hyperglycemia-induced apoptosis, and N-myc appears to provide a positive autocrine feedback on Pax-2 gene expression in embryonic mesenchymal cells.
UR - http://www.scopus.com/inward/record.url?scp=34247372968&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=34247372968&partnerID=8YFLogxK
U2 - 10.1007/s00467-007-0444-z
DO - 10.1007/s00467-007-0444-z
M3 - Article
C2 - 17357786
AN - SCOPUS:34247372968
SN - 0931-041X
VL - 22
SP - 813
EP - 824
JO - Pediatric Nephrology
JF - Pediatric Nephrology
IS - 6
ER -