Performance improvement mechanisms of pentacene-based organic thin-film transistors using TPD buffer layer

Ching Ting Lee, Yi Min Lin

Research output: Contribution to journalArticlepeer-review

13 Citations (Scopus)

Abstract

To improve the performances of pentacene-based organic thin-film transistors (OTFTs), a TPD buffer layer was inserted between the Au metal electrode and the pentacene channel layer. As shown by the ultraviolet photoelectron spectroscopy measurement, the Au work function was increased from 4.61 eV for Au in direct contact with pentacene to 4.74 eV and 4.78 eV for the sample inserted with 2-nm-thick and 3-nm-thick TPD buffer layers, respectively, between the Au metal electrode and the pentacene channel layer. Moreover, the contact resistance was reduced from 1 MΩ to 0.1 MΩ by inserting a 2-nm-thick TPD buffer layer. Compared with the transconductance of 2.67 × 10-7 S, the field-effect mobility of 0.46 cm2/V s, and the substhreshold swing of 1.78 V/decade for the conventional pentacene-based OTFTs without TPD buffer layer, the transconductance, the field-effect mobility, and the subthreshold swing were improved to 9.77 × 10-7 S, 1.68 cm2/V s, and 1.46 V/decade, respectively, for the pentacene-based OTFTs inserted with a 2-nm-thick TPD buffer layer. By considering the trade-off between the increase of Au work function and the tunneling effect, the optimal thickness of the TPD buffer layer in the pentacene-based OTFTs was 2 nm.

Original languageEnglish
Pages (from-to)1952-1957
Number of pages6
JournalOrganic Electronics
Volume14
Issue number8
DOIs
Publication statusPublished - 2013

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Biomaterials
  • Chemistry(all)
  • Condensed Matter Physics
  • Materials Chemistry
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Performance improvement mechanisms of pentacene-based organic thin-film transistors using TPD buffer layer'. Together they form a unique fingerprint.

Cite this