Performance modeling of FEC-based unequal error protection for H.264/AVC video streaming over burst-loss channels

Chun I. Kuo, Ce Kuen Shieh, Wen Shyang Hwang, Chih Heng Ke

Research output: Contribution to journalArticlepeer-review

7 Citations (Scopus)

Abstract

Unequal error protection systems are a popular technique for video streaming. Forward error correction (FEC) is one of error control techniques to improve the quality of video streaming over lossy channels. Moreover, frame-level FEC techniques have been proposed for video streaming because of different priority video frames within the transmission rate constraint on a Bernoulli channel. However, various communication and storage systems are likely corrupted by bursts of noise in the current wireless behavior. If the burst losses go beyond the protection capacity of FEC, the efficacy of FEC can be degraded. Therefore, our proposed model allows an assessment of the perceived quality of H.264/AVC video streaming over bursty channels, and is validated by simulation experiments on the NS-2 network simulator at a given estimate of the packet loss ratio and average burst length. The results suggest a useful reference in designing the FEC scheme for video applications, and as the video coding and channel parameters are given, the proposed model can provide a more accurate evaluation tool for video streaming over bursty channels and help to evaluate the impact of FEC performance on different burst-loss parameters.

Original languageEnglish
Article numbere2826
JournalInternational Journal of Communication Systems
Volume30
Issue number1
DOIs
Publication statusPublished - 2017 Jan 10

All Science Journal Classification (ASJC) codes

  • Computer Networks and Communications
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Performance modeling of FEC-based unequal error protection for H.264/AVC video streaming over burst-loss channels'. Together they form a unique fingerprint.

Cite this