Phase-based profiling and performance prediction with timing approximate simulators

Chih Wei Yeh, Chia Heng Tu, Yi Chuan Liang, Shih Hao Hung

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Designing a system usually acquires lots of instincts and knowledge to harmonize the computing resources under the paradigm of application specific heterogeneous systems. This paper presents a phase-based profiling mechanism to speed up the process of learning how application behaviors perform on the hardware and vice versa. By analyzing program phases, performance information can be gathered in a way that highlights the performance of high-level tasks in an application running on different hardware settings. We evaluated our phase-based profiling framework using QEMU, employing approximate timing models and mechanisms to track functions/events in programs and operating systems of the guest system. Furthermore, by using timing simulations, it is possible to escape the confined boundaries of real-world machine based systems, and to rapidly explore the impact of hardware parameters on the system performance. In our experimental results, phase-based profiling yields useful information of the runtime behaviors and performance of a program, allowing developers to discover program bottlenecks, and predicts the performance of optimization ideas on the software and/or underlying hardware. Our results suggest that incorporating phase profiling with the timing approximate simulator helps to facilitate hardware and software co-design.

Original languageEnglish
Title of host publicationProceedings - 2018 IEEE 24th International Conference on Embedded and Real-Time Computing Systems and Applications, RTCSA 2018
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages101-110
Number of pages10
ISBN (Electronic)9781538677599
DOIs
Publication statusPublished - 2019 Jan 9
Event24th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications, RTCSA 2018 - Hakodate, Japan
Duration: 2018 Aug 292018 Aug 31

Publication series

NameProceedings - 2018 IEEE 24th International Conference on Embedded and Real-Time Computing Systems and Applications, RTCSA 2018

Conference

Conference24th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications, RTCSA 2018
CountryJapan
CityHakodate
Period18-08-2918-08-31

All Science Journal Classification (ASJC) codes

  • Artificial Intelligence
  • Computer Networks and Communications
  • Computer Science Applications

Fingerprint Dive into the research topics of 'Phase-based profiling and performance prediction with timing approximate simulators'. Together they form a unique fingerprint.

Cite this