TY - JOUR
T1 - Phase diagram and oxygen-ion conductivity in the Y2O3-Nb2O5 system
AU - Lee, Jin Ho
AU - Yashima, Masatomo
AU - Kakihana, Masato
AU - Yoshimura, Masahiro
PY - 1998/4
Y1 - 1998/4
N2 - The phase equilibria in the Y2O3-Nb2O5 system have been studied at temperatures of 1500° and 1700°C in the compositional region of 0-50 mol % Nb2O5. The solubility limits of the C-type Y2O3 cubic phase and the YNbO4 monoclinic phase are 2.5 (±1.0) mol% Nb2O5 and 0.2 (±0.4) mol% Y2O3, respectively, at 1700°C. The fluorite (F) single phase exists in the region of 20.1-27.7 mol% Nb2O5 at 1700°C, and in the region of 21.1-27.0 mol% Nb2O5 at 1500°C, respectively. Conductivity of the Y2O3-x mol% Nb2O5 system increases as the value of x increases, to a maximum at x = 20 in the compositional region of 0 ≤ x ≤ 20, as a result of the increase in the fraction of F phase. In the F single-phase region, the conductivity decreases in the region of 20-25 mol% Nb2O5, because of the decrease in the content of oxygen vacancies, whereas the conductivity at x = 27 is larger than that at x = 25. The conductivity decreases as the value of x increases in the region of 27.5 ≤ x ≤ 50, because of the decrease in the fraction of F. The 20 mol% Nb2O5 sample exhibits the highest conductivity and a very wide range of ionic domain, at least up to log po2 = -20 (where po2 is given in units of atm), which indicates practical usefulness as an ionic conductor.
AB - The phase equilibria in the Y2O3-Nb2O5 system have been studied at temperatures of 1500° and 1700°C in the compositional region of 0-50 mol % Nb2O5. The solubility limits of the C-type Y2O3 cubic phase and the YNbO4 monoclinic phase are 2.5 (±1.0) mol% Nb2O5 and 0.2 (±0.4) mol% Y2O3, respectively, at 1700°C. The fluorite (F) single phase exists in the region of 20.1-27.7 mol% Nb2O5 at 1700°C, and in the region of 21.1-27.0 mol% Nb2O5 at 1500°C, respectively. Conductivity of the Y2O3-x mol% Nb2O5 system increases as the value of x increases, to a maximum at x = 20 in the compositional region of 0 ≤ x ≤ 20, as a result of the increase in the fraction of F phase. In the F single-phase region, the conductivity decreases in the region of 20-25 mol% Nb2O5, because of the decrease in the content of oxygen vacancies, whereas the conductivity at x = 27 is larger than that at x = 25. The conductivity decreases as the value of x increases in the region of 27.5 ≤ x ≤ 50, because of the decrease in the fraction of F. The 20 mol% Nb2O5 sample exhibits the highest conductivity and a very wide range of ionic domain, at least up to log po2 = -20 (where po2 is given in units of atm), which indicates practical usefulness as an ionic conductor.
UR - http://www.scopus.com/inward/record.url?scp=0032046481&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0032046481&partnerID=8YFLogxK
U2 - 10.1111/j.1151-2916.1998.tb02424.x
DO - 10.1111/j.1151-2916.1998.tb02424.x
M3 - Article
AN - SCOPUS:0032046481
SN - 0002-7820
VL - 81
SP - 894
EP - 900
JO - Journal of the American Ceramic Society
JF - Journal of the American Ceramic Society
IS - 4
ER -