Phase formation, morphology evolution and tunable bandgap of Sn 1-xSbxSe nanocrystals

Che Hsu Hu, Ming Hung Chiang, Ming Shiun Hsieh, Wen Tai Lin, Yaw Shyan Fu, Tzung Fang Guo

Research output: Contribution to journalArticle

9 Citations (Scopus)

Abstract

The phase formation, morphology evolution and bandgap of Sn 1-xSbxSe (0 ≤ x ≤ 0.6) nanocrystals synthesized at 230-275 °C for 5-36 h in a one-pot system were studied. Sn2+ is kinetically more reactive than Sb3+ toward Se2-. The SnSe(1) phase (JCPDS 01-075-6133) grew in the Sn1-xSbxSe (0 ≤ x ≤ 0.2) nanocrystals, while the SnSe(2) phase (JCPDS 32-1382) was dominant in the Sn1-xSbxSe (0.3 ≤ x ≤ 0.6) nanocrystals. In the present study, the substitution solubility of Sb in the SnSe lattice is about 10 at%. The introduction of more Sb in the Sn 1-xSbxSe (0.3 ≤ x ≤ 0.6) nanocrystals induced more defects therein and thus caused the phase transformation from SnSe(1) to SnSe(2). The SnSe nanocrystals grew as nanosheets, while the introduction of Sb enhanced the growth of Sn1-xSbxSe nanorods. The direct and indirect bandgaps of the Sn1-xSbxSe (0 ≤ x ≤ 0.2) nanocrystals could be tuned from 1.39 to 1.53 eV and 0.93 to 1.28 eV, respectively, by increasing the Sb concentration (x) from 0 to 0.2. The tunable morphology and bandgap of the Sn1-xSbxSe nanocrystals make them potential candidates as photovoltaic materials.

Original languageEnglish
Pages (from-to)1786-1792
Number of pages7
JournalCrystEngComm
Volume16
Issue number9
DOIs
Publication statusPublished - 2014 Jan 1

All Science Journal Classification (ASJC) codes

  • Chemistry(all)
  • Materials Science(all)
  • Condensed Matter Physics

Fingerprint Dive into the research topics of 'Phase formation, morphology evolution and tunable bandgap of Sn <sub>1-x</sub>Sb<sub>x</sub>Se nanocrystals'. Together they form a unique fingerprint.

  • Cite this