TY - JOUR
T1 - Phase transition and elasticity of enstatite under pressure from experiments and first-principles studies
AU - Li, Baosheng
AU - Kung, Jennifer
AU - Liu, Wei
AU - Liebermann, Robert C.
N1 - Funding Information:
This study is supported by Grants from National Science Foundation ( EAR1045630 ) and DOE/NNSA ( DE-FG5209NA29458 ; the work of JK and RCL was supported by NSF Grant ( EAR 06-35651 ). Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. W-31-109-ENG-38. We thank the editors and two anonymous reviewers for their constructive comments and suggestions that helped improve the manuscript. MPI Publication No. 499.
PY - 2014/3
Y1 - 2014/3
N2 - We have investigated the thermodynamic stability, crystal structure, elastic constants, and sound velocities of MgSiO3-enstatite using data from X-ray diffraction and ultrasonic measurements up to 16.8GPa and first-principles calculations up to 30GPa. The calculated enthalpies provide theoretical support for the phase transition from Pbca to P21/c between 9 and 14GPa previously observed in natural orthoensatite and MgSiO3 enstatite. A density increase of 1.4-1.5% for the Pbca→P21/c transition is obtained from both first-principles and experimental studies. Elastic constants of Pbca, P21/c, C2/c, P21ca and Pbca-II are all calculated, and a softening in the shear constant C55 is predicted for Pbca and Pbca-II phases. C55 of Pbca is found to be closely correlated with the A-site SiO4 tetrahedra chain angle while C44 and C66 are correlated with the B-site chain angle. Pbca, P21/c and C2/c all exhibit similar volumetric compressibilities at all pressures. The calculated velocities of the P21/c phase at 12GPa are equal to those of Pbca for P and 1.3% higher for S waves. The experimentally observed P and S wave velocity anomalies can be qualitatively described by the transformation from Pbca to P21/c; however, the magnitudes of the velocity decreases between 10 and 14GPa remain to be verified by future single crystal data or polycrystalline measurements at high pressures. The predicted velocity jumps of 2.8% and 4.5% for P and S waves, respectively, between Pbca and C2/c in the pressure range of 5-12GPa are in excellent agreement with the values of ~3(1)% and ~5(1)% obtained from the directly measured data, thereby making it a plausible candidate for the seismic X-discontinuity at depths of 250-300km in the Earth's upper mantle.
AB - We have investigated the thermodynamic stability, crystal structure, elastic constants, and sound velocities of MgSiO3-enstatite using data from X-ray diffraction and ultrasonic measurements up to 16.8GPa and first-principles calculations up to 30GPa. The calculated enthalpies provide theoretical support for the phase transition from Pbca to P21/c between 9 and 14GPa previously observed in natural orthoensatite and MgSiO3 enstatite. A density increase of 1.4-1.5% for the Pbca→P21/c transition is obtained from both first-principles and experimental studies. Elastic constants of Pbca, P21/c, C2/c, P21ca and Pbca-II are all calculated, and a softening in the shear constant C55 is predicted for Pbca and Pbca-II phases. C55 of Pbca is found to be closely correlated with the A-site SiO4 tetrahedra chain angle while C44 and C66 are correlated with the B-site chain angle. Pbca, P21/c and C2/c all exhibit similar volumetric compressibilities at all pressures. The calculated velocities of the P21/c phase at 12GPa are equal to those of Pbca for P and 1.3% higher for S waves. The experimentally observed P and S wave velocity anomalies can be qualitatively described by the transformation from Pbca to P21/c; however, the magnitudes of the velocity decreases between 10 and 14GPa remain to be verified by future single crystal data or polycrystalline measurements at high pressures. The predicted velocity jumps of 2.8% and 4.5% for P and S waves, respectively, between Pbca and C2/c in the pressure range of 5-12GPa are in excellent agreement with the values of ~3(1)% and ~5(1)% obtained from the directly measured data, thereby making it a plausible candidate for the seismic X-discontinuity at depths of 250-300km in the Earth's upper mantle.
UR - http://www.scopus.com/inward/record.url?scp=84897098845&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84897098845&partnerID=8YFLogxK
U2 - 10.1016/j.pepi.2013.11.009
DO - 10.1016/j.pepi.2013.11.009
M3 - Article
AN - SCOPUS:84897098845
SN - 0031-9201
VL - 228
SP - 63
EP - 74
JO - Physics of the Earth and Planetary Interiors
JF - Physics of the Earth and Planetary Interiors
ER -