TY - JOUR
T1 - Phosphatidylinositol 3-kinase activation is required for stress protocol-induced modification of hippocampal synaptic plasticity
AU - Yang, Ping Chun
AU - Yang, Chih Hao
AU - Huang, Chiung Chun
AU - Hsu, Kuei Sen
PY - 2008/2/1
Y1 - 2008/2/1
N2 - Stress dramatically affects the induction of hippocampal synaptic plasticity; however, the molecular details of how it does so remain unclear. Phosphatidylinositol 3-kinase (PI3K) signaling plays a crucial role in promoting neuronal survival and neuroplasticity, but its role, if any, in stress-induced alterations of long term potentiation (LTP) and long term depression (LTD) is unknown. We found here that inhibitors of PI3K signaling blocked the effects of acute restraint-tail shock stress protocol on LTP and LTD. Therefore, the purpose of the present study is to explore the signaling events involving PI3K in terms of its role in mediating stress protocol-induced alterations of LTP and LTD. We found that stress protocol-induced PI3K activation can be blocked by various inhibitors, including RU38486 for glucocorticoid receptors, LY294002 for PI3K, and DL-2-amino-5-phosphonopentanoic acid for N-methyl-D-aspartate receptors or brain-derived neurotrophic factor antisense oligonucleotides. Also, immunoblotting analyses revealed that stress protocol induced a profound and prolonged phosphorylation of numbers of PI3K downstream effectors, including 3-phosphoinositide-dependent protein kinase-1, protein kinase B, mammalian target of rapamycin (mTOR), p70 S6 kinase, and eukaryotic initiation factor 4B in hippocampal CA1 homogenate, which was prevented by the PI3K inhibitor pretreatment. More importantly, we found that stress protocol significantly increased the protein expression of dendritic scaffolding protein PSD-95 (postsynaptic density-95), which is known to be involved in LTP and LTD, in an mTOR-dependent manner. These results identify a key role of PI3K signaling in mediating the stress protocol-induced modification of hippocampal synaptic plasticity and further suggest that PI3K may do so by invoking the protein expression of PSD-95.
AB - Stress dramatically affects the induction of hippocampal synaptic plasticity; however, the molecular details of how it does so remain unclear. Phosphatidylinositol 3-kinase (PI3K) signaling plays a crucial role in promoting neuronal survival and neuroplasticity, but its role, if any, in stress-induced alterations of long term potentiation (LTP) and long term depression (LTD) is unknown. We found here that inhibitors of PI3K signaling blocked the effects of acute restraint-tail shock stress protocol on LTP and LTD. Therefore, the purpose of the present study is to explore the signaling events involving PI3K in terms of its role in mediating stress protocol-induced alterations of LTP and LTD. We found that stress protocol-induced PI3K activation can be blocked by various inhibitors, including RU38486 for glucocorticoid receptors, LY294002 for PI3K, and DL-2-amino-5-phosphonopentanoic acid for N-methyl-D-aspartate receptors or brain-derived neurotrophic factor antisense oligonucleotides. Also, immunoblotting analyses revealed that stress protocol induced a profound and prolonged phosphorylation of numbers of PI3K downstream effectors, including 3-phosphoinositide-dependent protein kinase-1, protein kinase B, mammalian target of rapamycin (mTOR), p70 S6 kinase, and eukaryotic initiation factor 4B in hippocampal CA1 homogenate, which was prevented by the PI3K inhibitor pretreatment. More importantly, we found that stress protocol significantly increased the protein expression of dendritic scaffolding protein PSD-95 (postsynaptic density-95), which is known to be involved in LTP and LTD, in an mTOR-dependent manner. These results identify a key role of PI3K signaling in mediating the stress protocol-induced modification of hippocampal synaptic plasticity and further suggest that PI3K may do so by invoking the protein expression of PSD-95.
UR - http://www.scopus.com/inward/record.url?scp=41449088031&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=41449088031&partnerID=8YFLogxK
U2 - 10.1074/jbc.M706954200
DO - 10.1074/jbc.M706954200
M3 - Article
C2 - 18057005
AN - SCOPUS:41449088031
SN - 0021-9258
VL - 283
SP - 2631
EP - 2643
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 5
ER -