Photodissociation spectroscopy of Mg + -rare gas complexes

J. S. Pilgrim, Chen-Sheng Yeh, K. R. Berry, M. A. Duncan

Research output: Contribution to journalArticlepeer-review

101 Citations (Scopus)


Weakly bound complexes of the form Mg + -RG (RG=Ar, Kr, Xe) are prepared in a pulsed nozzle/ laser vaporization cluster source and studied with mass-selected photodissociation spectroscopy. The chromophore giving rise to the molecular spectra in these complexes is the 2 P← 2 S Mg + atomic resonance line. A 2 Σ + ground state and 2 Σ + and 2 II excited states are derived from this atomic transition. Vibrationally resolved spectra are measured for each of these complexes in the A 2 II ←X 2 Σ + electronic transition. These systems are redshifted from the atomic resonance line, indicating that each complex is more strongly bound in its excited 2 II state than it is in the ground state. Extended vibrational progressions allow determination of the respective vibrational constants: Mg + -Ar, ω e = 272 cm -1 ; Mg + -Kr, ω e = 258 cm -1 ; Mg + -Xe, ω e = 258 cm -1 . Extrapolation of the excited state vibrational progressions, and combination with the known atomic asymptotes and spectral shifts, leads to determination of the respective dissociation energies: Mg + -Ar, D 0 = 1281 cm -1 (3.66 kcal/mol; 0.159 eV); Mg+-Kr, D 0 = 1923 cm -1 (5.50 kcal/mol; 0.238 eV); Mg+-Xe, D 0 = 4182 cm -1 (11.96 kcal/mol; 0.519 eV). The spin-orbit splitting in the 2 II 1/2,3/2 state for all complexes is larger than expected by comparison to the Mg + atomic value. This larger splitting in the complexes, which is attributed to configuration mixing with states on the rare gas atoms, increases for the series Ar, Kr, Xe, and decreases linearly for higher vibrational states of each complex.

Original languageEnglish
Pages (from-to)7945-7956
Number of pages12
JournalThe Journal of Chemical Physics
Issue number11
Publication statusPublished - 1994 Jan 1

All Science Journal Classification (ASJC) codes

  • Physics and Astronomy(all)
  • Physical and Theoretical Chemistry

Fingerprint Dive into the research topics of 'Photodissociation spectroscopy of Mg <sup>+</sup> -rare gas complexes'. Together they form a unique fingerprint.

Cite this