Abstract
This study investigated the physiological regulation of brain immune homeostasis in rat primary neuron-glial cultures by sub-nanomolar concentrations of prostaglandin E2 (PGE2). We demonstrated that 0.01 to 10 nM PGE2 protected dopaminergic neurons against LPS-induced neurotoxicity through a reduction of microglial release of pro-inflammatory factors in a dose-dependent manner. Mechanistically, neuroprotective effects elicited by PGE2 were mediated by the inhibition of microglial NOX2, a major superoxide-producing enzyme. This conclusion was supported by (1) the close relationship between inhibition of superoxide and PGE2-induced neuroprotective effects; (2) the mediation of PGE2-induced reduction of superoxide and neuroprotection via direct inhibition of the catalytic subunit of NOX2, gp91phox, rather than through the inhibition of conventional prostaglandin E2 receptors; and (3) abolishment of the neuroprotective effect of PGE2 in NOX2-deficient cultures. In summary, this study revealed a potential physiological role of PGE2 in maintaining brain immune homeostasis and protecting neurons via an EP receptor-independent mechanism.
Original language | English |
---|---|
Pages (from-to) | 8001-8013 |
Number of pages | 13 |
Journal | Molecular Neurobiology |
Volume | 55 |
Issue number | 10 |
DOIs | |
Publication status | Published - 2018 Oct 1 |
All Science Journal Classification (ASJC) codes
- Neurology
- Cellular and Molecular Neuroscience