Polyacetylenes function as anti-angiogenic agents

Li Wha Wu, Yi Ming Chiang, Hsiao Ching Chuang, Sheng Yang Wang, Ga Wen Yang, Ya Huey Chen, Ling Ya Lai, Lie Fen Shyur

Research output: Contribution to journalArticle

34 Citations (Scopus)


Purpose. To investigate the antiangiogenic effects of plant extracts and polyacetylenes isolated from Bidens pilosa Linn., which is a popular nutraceutical herbal tea and folk medicine in anti-inflammatory, antitumor, and other medications worldwide. Methods. Anti-cell proliferation, anti-tube formation, and cell migration assays were used for the valuation of bioactivities of target plant extracts and phytocompounds against angiogenesis. Bioactivity-guided fractionation, HPLC, and various spectral analyses were used to identify active fraction and phytocompounds for anti-angiogenesis. Results. We show that an ethyl acetate (EA) fraction of B. pilosa exhibited significant anti-cell proliferation and anti-tube formation activities against human umbilical vein endothelium cells (HUVEC). Bioassay-guided fractionation led to isolation of one new and one known polyacetylenes, 1,2-dihydroxytrideca-5,7,9, 11-tetrayne (1) and 1,3-dihydroxy-6(E)- tetradecene-8,10,12-triyne (2), respectively, from the EA fraction. Compounds 1 and 2 manifested highly specific and significant activities against HUVEC proliferation with IC50 values of 2.5 and 0.375 μg/ml, respectively, however, compound 1 had a more potent effect on preventing tube formation of HUVEC than compound 2 at a dose of 2.5 μg/ml. Western blot analysis showed that both compounds upregulated p27(Kip) or p21(Cip1), cyclin-dependent kinase inhibitors, in HUVEC. Conclusions. This is the first report to demonstrate that polyacetylenes possess significant anti-angiogenic activities and the ability to regulate the expression of cell cycle mediators, for example, p27(Kip1), p21(Cip1), or cyclin E.

Original languageEnglish
Pages (from-to)2112-2119
Number of pages8
JournalPharmaceutical Research
Issue number11
Publication statusPublished - 2004 Dec 1

All Science Journal Classification (ASJC) codes

  • Biotechnology
  • Molecular Medicine
  • Pharmacology
  • Pharmaceutical Science
  • Organic Chemistry
  • Pharmacology (medical)

Fingerprint Dive into the research topics of 'Polyacetylenes function as anti-angiogenic agents'. Together they form a unique fingerprint.

  • Cite this

    Wu, L. W., Chiang, Y. M., Chuang, H. C., Wang, S. Y., Yang, G. W., Chen, Y. H., Lai, L. Y., & Shyur, L. F. (2004). Polyacetylenes function as anti-angiogenic agents. Pharmaceutical Research, 21(11), 2112-2119. https://doi.org/10.1023/B:PHAM.0000048204.08865.41