TY - JOUR
T1 - Prediction on Turbomachinery Flows Using Advanced Turbulence Models
AU - Shi, Min Shen
AU - Chi, Po An
AU - Chen, Wen Lih
N1 - Funding Information:
This work was supported by the Ministry of Science and Technology, Taiwan, Republic of China, under the grant number MOST 107-2221-E-006-117-MY2. The authors are very grateful for the financial support.
Publisher Copyright:
© 2019, The Aeronautical and Astronautical Society of the Republic of China. All right reserved.
PY - 2019/6/1
Y1 - 2019/6/1
N2 - Gas turbine engine is a very crucial technology for civil and military applications. Accurate prediction is very important for the numerical design process of a new turbomachine or for improving the performance of an existing design. It can largely lower the cost of expensive rig tests. In a numerical design process for turbomachine, 3D CFD is the last step prior to rig tests. If it is not accurate enough, lots of money and resources will be wasted in expensive rig tests. Therefore, the predictive accuracy of 3D CFD analysis is of great importance. In this study, a 3D CFD procedure is used to compute complicated multi-stage rotor/stator flows in turbomachines with an advanced eddy-viscosity turbulence model V2f. Linear EVM and k-ω SST models are also used for comparison. V2f model has been proven to return much more accurate results in many simple and yet important flows than other models, such as k-ε eddy-viscosity models, that are widely used in industry today. V2f model can predict stress anisotropy, transition, and effects associated with streamline curvature, hence, it is expected to perform equally well in complicated turbomachinery flows. In addition, the computational cost of V2f model is not much higher than those simple linear EVMs, making it an ideal model for turbomachinery flow simulation. The results prove that the predictive accuracy of V2f model is much better than linear EVMs in those cases investigated here.
AB - Gas turbine engine is a very crucial technology for civil and military applications. Accurate prediction is very important for the numerical design process of a new turbomachine or for improving the performance of an existing design. It can largely lower the cost of expensive rig tests. In a numerical design process for turbomachine, 3D CFD is the last step prior to rig tests. If it is not accurate enough, lots of money and resources will be wasted in expensive rig tests. Therefore, the predictive accuracy of 3D CFD analysis is of great importance. In this study, a 3D CFD procedure is used to compute complicated multi-stage rotor/stator flows in turbomachines with an advanced eddy-viscosity turbulence model V2f. Linear EVM and k-ω SST models are also used for comparison. V2f model has been proven to return much more accurate results in many simple and yet important flows than other models, such as k-ε eddy-viscosity models, that are widely used in industry today. V2f model can predict stress anisotropy, transition, and effects associated with streamline curvature, hence, it is expected to perform equally well in complicated turbomachinery flows. In addition, the computational cost of V2f model is not much higher than those simple linear EVMs, making it an ideal model for turbomachinery flow simulation. The results prove that the predictive accuracy of V2f model is much better than linear EVMs in those cases investigated here.
UR - http://www.scopus.com/inward/record.url?scp=85068207354&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85068207354&partnerID=8YFLogxK
U2 - 10.6125/JoAAA.201906_51(2).02
DO - 10.6125/JoAAA.201906_51(2).02
M3 - Article
AN - SCOPUS:85068207354
SN - 1990-7710
VL - 51
SP - 159
EP - 170
JO - Journal of Aeronautics, Astronautics and Aviation
JF - Journal of Aeronautics, Astronautics and Aviation
IS - 2
ER -