TY - JOUR
T1 - Predictive modeling for 14-day unplanned hospital readmission risk by using machine learning algorithms
AU - Lo, Yu Tai
AU - Liao, Jay Chie hen
AU - Chen, Mei Hua
AU - Chang, Chia Ming
AU - Li, Cheng Te
N1 - Funding Information:
We thank the nursing supervisor of discharge planning Ms. Hsiu-Hua Lee, discharge planning nurses, and the information technicians at National Cheng Kung University Hospital for helping us collect data from patients’ medical records. This work is supported by the Ministry of Science and Technology (MOST) of Taiwan under grants 109-2636-E-006-017 (MOST Young Scholar Fellowship), 110-2221-E-006-001, and 110-2221-E-006-136-MY3.
Funding Information:
This study was supported by the germination program of the National Cheng Kung University and in part by grants from National Cheng Kung University Hospital (NCKUH-10909041; NCKUH-11009005; NCKUH-11003007), Taiwan. The Funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Publisher Copyright:
© 2021, The Author(s).
PY - 2021/12
Y1 - 2021/12
N2 - Background: Early unplanned hospital readmissions are associated with increased harm to patients, increased medical costs, and negative hospital reputation. With the identification of at-risk patients, a crucial step toward improving care, appropriate interventions can be adopted to prevent readmission. This study aimed to build machine learning models to predict 14-day unplanned readmissions. Methods: We conducted a retrospective cohort study on 37,091 consecutive hospitalized adult patients with 55,933 discharges between September 1, 2018, and August 31, 2019, in an 1193-bed university hospital. Patients who were aged < 20 years, were admitted for cancer-related treatment, participated in clinical trial, were discharged against medical advice, died during admission, or lived abroad were excluded. Predictors for analysis included 7 categories of variables extracted from hospital’s medical record dataset. In total, four machine learning algorithms, namely logistic regression, random forest, extreme gradient boosting, and categorical boosting, were used to build classifiers for prediction. The performance of prediction models for 14-day unplanned readmission risk was evaluated using precision, recall, F1-score, area under the receiver operating characteristic curve (AUROC), and area under the precision–recall curve (AUPRC). Results: In total, 24,722 patients were included for the analysis. The mean age of the cohort was 57.34 ± 18.13 years. The 14-day unplanned readmission rate was 1.22%. Among the 4 machine learning algorithms selected, Catboost had the best average performance in fivefold cross-validation (precision: 0.9377, recall: 0.5333, F1-score: 0.6780, AUROC: 0.9903, and AUPRC: 0.7515). After incorporating 21 most influential features in the Catboost model, its performance improved (precision: 0.9470, recall: 0.5600, F1-score: 0.7010, AUROC: 0.9909, and AUPRC: 0.7711). Conclusions: Our models reliably predicted 14-day unplanned readmissions and were explainable. They can be used to identify patients with a high risk of unplanned readmission based on influential features, particularly features related to diagnoses. The operation of the models with physiological indicators also corresponded to clinical experience and literature. Identifying patients at high risk with these models can enable early discharge planning and transitional care to prevent readmissions. Further studies should include additional features that may enable further sensitivity in identifying patients at a risk of early unplanned readmissions.
AB - Background: Early unplanned hospital readmissions are associated with increased harm to patients, increased medical costs, and negative hospital reputation. With the identification of at-risk patients, a crucial step toward improving care, appropriate interventions can be adopted to prevent readmission. This study aimed to build machine learning models to predict 14-day unplanned readmissions. Methods: We conducted a retrospective cohort study on 37,091 consecutive hospitalized adult patients with 55,933 discharges between September 1, 2018, and August 31, 2019, in an 1193-bed university hospital. Patients who were aged < 20 years, were admitted for cancer-related treatment, participated in clinical trial, were discharged against medical advice, died during admission, or lived abroad were excluded. Predictors for analysis included 7 categories of variables extracted from hospital’s medical record dataset. In total, four machine learning algorithms, namely logistic regression, random forest, extreme gradient boosting, and categorical boosting, were used to build classifiers for prediction. The performance of prediction models for 14-day unplanned readmission risk was evaluated using precision, recall, F1-score, area under the receiver operating characteristic curve (AUROC), and area under the precision–recall curve (AUPRC). Results: In total, 24,722 patients were included for the analysis. The mean age of the cohort was 57.34 ± 18.13 years. The 14-day unplanned readmission rate was 1.22%. Among the 4 machine learning algorithms selected, Catboost had the best average performance in fivefold cross-validation (precision: 0.9377, recall: 0.5333, F1-score: 0.6780, AUROC: 0.9903, and AUPRC: 0.7515). After incorporating 21 most influential features in the Catboost model, its performance improved (precision: 0.9470, recall: 0.5600, F1-score: 0.7010, AUROC: 0.9909, and AUPRC: 0.7711). Conclusions: Our models reliably predicted 14-day unplanned readmissions and were explainable. They can be used to identify patients with a high risk of unplanned readmission based on influential features, particularly features related to diagnoses. The operation of the models with physiological indicators also corresponded to clinical experience and literature. Identifying patients at high risk with these models can enable early discharge planning and transitional care to prevent readmissions. Further studies should include additional features that may enable further sensitivity in identifying patients at a risk of early unplanned readmissions.
UR - http://www.scopus.com/inward/record.url?scp=85117564463&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85117564463&partnerID=8YFLogxK
U2 - 10.1186/s12911-021-01639-y
DO - 10.1186/s12911-021-01639-y
M3 - Article
C2 - 34670553
AN - SCOPUS:85117564463
SN - 1472-6947
VL - 21
JO - BMC Medical Informatics and Decision Making
JF - BMC Medical Informatics and Decision Making
IS - 1
M1 - 288
ER -