TY - JOUR
T1 - Preparation And Characterization Of Poly(L-Lactic Acid) Films Plasticized With Glycerol And Maleic Anhydride
AU - Ni'mah, Hikmatun
AU - Rochmadi, Rochmadi
AU - Woo, Eamor M.
AU - Widiasih, Dian A.
AU - Mayangsari, Siska
N1 - Publisher Copyright:
© IJTech 2019.
PY - 2019/5
Y1 - 2019/5
N2 - In this study, poly(L-lactic acid) (PLLA) was blended with glycerol as a plasticizer by the solution blending technique to form blend films. The glycerol content was varied in order to evaluate the effect of glycerol content on the PLLA properties and to obtain an optimum weight ratio of PLLA/glycerol (PLLA/Gly) blend films with improved properties. The effect of the addition of compatibilizer on the properties of the composite films was also observed. The properties of the films obtained were characterized by using FTIR, XRD, DMA and SEM. The FTIR spectra showed an increase in the intensity of the characteristic peak of glycerol with increasing glycerol content, indicating that the blending ratio and technique were precise. Based on the XRD analysis, the degree of crystallinity generally increased with the addition of glycerol. DMA analysis showed that the addition of glycerol reduced the value of tensile strength and Young's modulus of the PLLA/Gly films, but increased the elongation at break. The optimum weight ratio was reached by the sample of PLLA/Gly (80/20) with the value of tensile strength, Young's modulus and elongation at break being 13.43 MPa, 747.8 MPa and 1.96%, respectively. The addition of compatibilizer slightly increased the flexibility of the composite films. DSC analysis showed an increase in flexibility after the addition of glycerol, indicated by a decrease in Tg, which supports the results of the DMA analysis. SEM analysis was made of the porous morphology on the fracture surface of the films after the addition of glycerol; the porous structure was more pronounced in the PLLA/Gly (80/20) film with compatibilizer, which could therefore be considered for application as a scaffold in tissue engineering after further analysis has been conducted.
AB - In this study, poly(L-lactic acid) (PLLA) was blended with glycerol as a plasticizer by the solution blending technique to form blend films. The glycerol content was varied in order to evaluate the effect of glycerol content on the PLLA properties and to obtain an optimum weight ratio of PLLA/glycerol (PLLA/Gly) blend films with improved properties. The effect of the addition of compatibilizer on the properties of the composite films was also observed. The properties of the films obtained were characterized by using FTIR, XRD, DMA and SEM. The FTIR spectra showed an increase in the intensity of the characteristic peak of glycerol with increasing glycerol content, indicating that the blending ratio and technique were precise. Based on the XRD analysis, the degree of crystallinity generally increased with the addition of glycerol. DMA analysis showed that the addition of glycerol reduced the value of tensile strength and Young's modulus of the PLLA/Gly films, but increased the elongation at break. The optimum weight ratio was reached by the sample of PLLA/Gly (80/20) with the value of tensile strength, Young's modulus and elongation at break being 13.43 MPa, 747.8 MPa and 1.96%, respectively. The addition of compatibilizer slightly increased the flexibility of the composite films. DSC analysis showed an increase in flexibility after the addition of glycerol, indicated by a decrease in Tg, which supports the results of the DMA analysis. SEM analysis was made of the porous morphology on the fracture surface of the films after the addition of glycerol; the porous structure was more pronounced in the PLLA/Gly (80/20) film with compatibilizer, which could therefore be considered for application as a scaffold in tissue engineering after further analysis has been conducted.
UR - http://www.scopus.com/inward/record.url?scp=85066831469&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85066831469&partnerID=8YFLogxK
U2 - 10.14716/ijtech.v10i3.2936
DO - 10.14716/ijtech.v10i3.2936
M3 - Article
AN - SCOPUS:85066831469
SN - 2086-9614
VL - 10
SP - 531
EP - 540
JO - International Journal of Technology
JF - International Journal of Technology
IS - 3
ER -