Pressure effects on natural convection for non-Boussinesq fluid in a rectangular enclosure

Kuo Shu Hung, Chin-Hsiang Cheng

Research output: Contribution to journalArticle

26 Citations (Scopus)

Abstract

Numerical predictions of pressure effects on natural convection for a non-Boussinesq fluid in the rectangular enclosures are presented. A solution method based on a compressible flow model is employed to simultaneously determine the absolute pressure, density, temperature, and velocity distributions in the enclosures. Discretization equations are derived from the integral mass, momentum, and energy equations on a staggered grid. The fluid pressure in the enclosure is varied from 20 to 300 kPa such that the flow behavior in a vacuum or pressurized system can be observed. Physical situations investigated also include cases in a wide range of wall temperature difference associated with respective length scales, corresponding to an equivalent modified Rayleigh number ranging from 104 to 106. The validity of the incompressible flow model coupled with the Boussinesq approximation for the fluid density, which is commonly used in the existing studies of the buoyant flows, is discussed.

Original languageEnglish
Pages (from-to)515-528
Number of pages14
JournalNumerical Heat Transfer; Part A: Applications
Volume41
Issue number5
DOIs
Publication statusPublished - 2002 Jun 5

All Science Journal Classification (ASJC) codes

  • Numerical Analysis
  • Condensed Matter Physics

Fingerprint Dive into the research topics of 'Pressure effects on natural convection for non-Boussinesq fluid in a rectangular enclosure'. Together they form a unique fingerprint.

  • Cite this