Product Form Design Model Based on Multiobjective Optimization and Multicriteria Decision-Making

Meng Dar Shieh, Yongfeng Li, Chih Chieh Yang

Research output: Contribution to journalArticlepeer-review

16 Citations (Scopus)

Abstract

Affective responses concern customers' affective needs and have received increasing attention in consumer-focused research. To design a product that appeals to consumers, designers should consider multiple affective responses (MARs). Designing products capable of satisfying MARs falls into the category of multiobjective optimization (MOO). However, when exploring optimal product form design, most relevant studies have transformed multiple objectives into a single objective, which limits their usefulness to designers and consumers. To optimize product form design for MARs, this paper proposes an integrated model based on MOO and multicriteria decision-making (MCDM). First, design analysis is applied to identify design variables and MARs; quantification theory type I is then employed to build the relationship models between them; on the basis of these models, an MOO model for optimization of product form design is constructed. Next, we use nondominated sorting genetic algorithm-II (NSGA-II) as a multiobjective evolutionary algorithm (MOEA) to solve the MOO model and thereby derive Pareto optimal solutions. Finally, we adopt the fuzzy analytic hierarchy process (FAHP) to obtain the optimal design from the Pareto solutions. A case study of car form design is conducted to demonstrate the proposed approach. The results suggest that this approach is feasible and effective in obtaining optimal designs and can provide great insight for product form design.

Original languageEnglish
Article number5187521
JournalMathematical Problems in Engineering
Volume2017
DOIs
Publication statusPublished - 2017

All Science Journal Classification (ASJC) codes

  • Mathematics(all)
  • Engineering(all)

Fingerprint Dive into the research topics of 'Product Form Design Model Based on Multiobjective Optimization and Multicriteria Decision-Making'. Together they form a unique fingerprint.

Cite this