Protein interactome analysis of iduronic acid-containing glycosaminoglycans reveals a novel flagellar invasion factor MbhA

Felix Shih Hsiang Hsiao, Shyi Kuen Yang, Jun Mu Lin, Yi Wen Chen, Chien Sheng Chen

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

Pathogens are able to exploit specific glycosaminoglycans (GAGs), especially iduronic acid (IdoA)-containing GAGs, to invade the host. By analyzing Escherichia coli proteome chip data, we identified the interactomes of three IdoA-containing GAGs: heparin, heparin sulfate (HS), and chondroitin sulfate B (CSB). Using non-IdoA-containing GAG, chondroitin sulfate C, as a negative control, 157 proteins specifically binding with IdoA-containing GAGs were revealed in the present study. These proteins showed functional enrichment in protein synthesis and metabolism. Fifteen proteins which commonly interacts with three IdoA-containing GAGs were further examined. The regular expression for motif showed these common IdoA interactome shared a conserved sequence. Among them, we identified a second flagellar system outer membrane protein, MbhA. The MbhA has Kd values of 8.9 × 10−8 M, 5.3 × 10−7 M, and 1.79 × 10−7 M to interact with heparin, HS, and CSB, respectively. Using flow cytometry, we confirmed that the MbhA protein can bind to human epithelial cells HCT-8. Overexpression of mbhA increased the percentage of invasion in E. coli which lacks a second flagellar system. Moreover, pre-blocking of HCT-8 cells with MbhA inhibited the bacterial invasion, implying the importance of the direct interaction of MbhA and the host cell surface on bacterial invasion. Significance: We analyzed the Escherichia coli proteomic data to elucidate the interactomes of three different IdoA-containing GAGs (heparin, HS, and CSB) because these IdoA-containing GAGs can mediate bacterial invasion to the host. Through proteomic and systematic analysis, a second flagellar system outer membrane protein, MbhA, was also identified in the present study. Affinity assay confirmed that MbhA can bind to three IdoA-containing GAGs heparin, HS, and CSB. The result of flow cytometry also showed MbhA can interact with human epithelial cells HCT-8. Results of bacteria invasion assay showed overexpression of mbhA promoted the bacterial invasion. Moreover, pre-blocking of HCT-8 cells with MbhA also reduced the percentage of bacterial invasion. These findings correspond well that MbhA is one of invasion factors.

Original languageEnglish
Article number103485
JournalJournal of Proteomics
Volume208
DOIs
Publication statusPublished - 2019 Sep 30

    Fingerprint

All Science Journal Classification (ASJC) codes

  • Biophysics
  • Biochemistry

Cite this