Protein Kinase A-Mediated Septin7 Phosphorylation Disrupts Septin Filaments and Ciliogenesis

Han Yu Wang, Chun Hsiang Lin, Yi Ru Shen, Ting Yu Chen, Chia-Yih Wang, Pao Lin Kuo

Research output: Contribution to journalArticlepeer-review


Septins are GTP-binding proteins that form heteromeric filaments for proper cell growth and migration. Among the septins, septin7 (SEPT7) is an important component of all septin filaments. Here we show that protein kinase A (PKA) phosphorylates SEPT7 at Thr197, thus disrupting septin filament dynamics and ciliogenesis. The Thr197 residue of SEPT7, a PKA phosphorylating site, was conserved among different species. Treatment with cAMP or overexpression of PKA catalytic subunit (PKACA2) induced SEPT7 phosphorylation, followed by disruption of septin filament formation. Constitutive phosphorylation of SEPT7 at Thr197 reduced SEPT7‒SEPT7 interaction, but did not affect SEPT7‒SEPT6‒SEPT2 or SEPT4 interaction. Moreover, we noted that SEPT7 interacted with PKACA2 via its GTP-binding domain. Furthermore, PKA-mediated SEPT7 phosphorylation disrupted primary cilia formation. Thus, our data uncover the novel biological function of SEPT7 phosphorylation in septin filament polymerization and primary cilia formation.

Original languageEnglish
Issue number2
Publication statusPublished - 2021 Feb 9

All Science Journal Classification (ASJC) codes

  • Medicine(all)

Fingerprint Dive into the research topics of 'Protein Kinase A-Mediated Septin7 Phosphorylation Disrupts Septin Filaments and Ciliogenesis'. Together they form a unique fingerprint.

Cite this