TY - JOUR
T1 - Quantitative assessment on the orientation and distribution of carbon fibers in a conductive polymer composite using high-frequency ultrasound
AU - Lin, Yi Hsun
AU - Huang, Chih Chung
AU - Wang, Shyh Hau
N1 - Funding Information:
Manuscript received January 9, 2012; accepted January 30, 2012. This work was supported by the national science council of Taiwan under grant nsc 98-2221-E-006-263-My3. y.-H. lin and s.-H. Wang are with the department of computer science and Information Engineering, Institute of Medical Informatics, Medical device Innovation center, national cheng Kung University, Tainan city, Taiwan (e-mail: [email protected]). c.-c. Huang is with the department of Electrical Engineering, Fu Jen catholic University, Hsin chuang district, new Taipei city, Taiwan. doI http://dx.doi.org/10.1109/TUFFc.2012.2282
PY - 2012
Y1 - 2012
N2 - Conductive polymer composites, typically fabricated from a mix of conductive fillers and a polymer substrate, are commonly applied as bipolar plates in a fuel cell stack. Electrical conductivity is a crucial property that greatly depends on the distribution and orientation of the fillers. In this study, a 50-MHz ultrasound imaging system and analysis techniques capable of nondestructively assessing the properties of carbon fibers (CFs) in conductive polymer composites were developed. Composite materials containing a mix of polycarbonate substrates and 0 to 0.3 wt% of CFs were prepared using an injection molding technique. Ultrasonic A-line signals and C-scan images were acquired from each composite sample in regions at a depth of 0.15 mm beneath the sample surface (region A) and those at a depth of 0.3 mm (region B). The integrated backscatter (IB) and the Nakagami statistical parameter were calculated to quantitatively assess the samples. The area ratio, defined as the percentage of areas composed of CF images normalized by that of the whole C-scan image, was applied to further quantify the orientation of CFs perpendicular to the sample surface. Corresponding to the increase in CF concentrations from 0.1 to 0.3 wt%, the average IB and Nakagami parameter (m) of the composite samples increased from -78.10 ± 2.20 (mean ± standard deviation) to -72.66 ± 1.40 dB and from 0.024 ± 0.012 to 0.048 ± 0.011, respectively. The corresponding area ratios were respectively estimated to be 0.78 ± 0.35%, 2.33 ± 0.66%, and 2.20 ± 0.60% in region A of the samples; those of CFs with a perpendicular orientation were 0.04 ± 0.03%, 0.08 ± 0.02%, and 0.12 ± 0.05%. The area ratios in region B of the samples were calculated to be 1.19 ± 0.54%, 2.81 ± 0.42%, and 2.64 ± 0.76%, and those of CFs with a perpendicular orientation were 0.07 ± 0.04%, 0.12 ± 0.04%, and 0.14 ± 0.03%. According to the results of the orientations and ultrasonic images, CFs tended to distribute more uniformly in the deeper regions of the samples. This study validates that the distribution and orientation of CFs in conductive polymer composites could be sensitively and quantitatively assessed by high-frequency ultrasound in conjunction with current analysis methods.
AB - Conductive polymer composites, typically fabricated from a mix of conductive fillers and a polymer substrate, are commonly applied as bipolar plates in a fuel cell stack. Electrical conductivity is a crucial property that greatly depends on the distribution and orientation of the fillers. In this study, a 50-MHz ultrasound imaging system and analysis techniques capable of nondestructively assessing the properties of carbon fibers (CFs) in conductive polymer composites were developed. Composite materials containing a mix of polycarbonate substrates and 0 to 0.3 wt% of CFs were prepared using an injection molding technique. Ultrasonic A-line signals and C-scan images were acquired from each composite sample in regions at a depth of 0.15 mm beneath the sample surface (region A) and those at a depth of 0.3 mm (region B). The integrated backscatter (IB) and the Nakagami statistical parameter were calculated to quantitatively assess the samples. The area ratio, defined as the percentage of areas composed of CF images normalized by that of the whole C-scan image, was applied to further quantify the orientation of CFs perpendicular to the sample surface. Corresponding to the increase in CF concentrations from 0.1 to 0.3 wt%, the average IB and Nakagami parameter (m) of the composite samples increased from -78.10 ± 2.20 (mean ± standard deviation) to -72.66 ± 1.40 dB and from 0.024 ± 0.012 to 0.048 ± 0.011, respectively. The corresponding area ratios were respectively estimated to be 0.78 ± 0.35%, 2.33 ± 0.66%, and 2.20 ± 0.60% in region A of the samples; those of CFs with a perpendicular orientation were 0.04 ± 0.03%, 0.08 ± 0.02%, and 0.12 ± 0.05%. The area ratios in region B of the samples were calculated to be 1.19 ± 0.54%, 2.81 ± 0.42%, and 2.64 ± 0.76%, and those of CFs with a perpendicular orientation were 0.07 ± 0.04%, 0.12 ± 0.04%, and 0.14 ± 0.03%. According to the results of the orientations and ultrasonic images, CFs tended to distribute more uniformly in the deeper regions of the samples. This study validates that the distribution and orientation of CFs in conductive polymer composites could be sensitively and quantitatively assessed by high-frequency ultrasound in conjunction with current analysis methods.
UR - http://www.scopus.com/inward/record.url?scp=84861489041&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84861489041&partnerID=8YFLogxK
U2 - 10.1109/TUFFC.2012.2282
DO - 10.1109/TUFFC.2012.2282
M3 - Article
C2 - 22622982
AN - SCOPUS:84861489041
SN - 0885-3010
VL - 59
SP - 970
EP - 980
JO - IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control
JF - IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control
IS - 5
M1 - 6202421
ER -