Quantitative uniqueness estimates for the shallow shell system and their application to an inverse problem

Michele Di Cristo, Ching-Lung Lin, Jenn Nan Wang

Research output: Contribution to journalArticle

7 Citations (Scopus)

Abstract

In this paper we derive some quantitative uniqueness estimates for the shallow shell equations. Our proof relies on appropriate Carleman estimates. For applications, we consider the size estimate inverse problem.

Original languageEnglish
Pages (from-to)43-92
Number of pages50
JournalAnnali della Scuola Normale - Classe di Scienze
Volume12
Issue number1
Publication statusPublished - 2013

Fingerprint

Shallow Shell
Inverse problems
Inverse Problem
Uniqueness
Carleman Estimate
Estimate

All Science Journal Classification (ASJC) codes

  • Theoretical Computer Science
  • Mathematics (miscellaneous)

Cite this

@article{8844820161864ba3bc5fa1827b3a1680,
title = "Quantitative uniqueness estimates for the shallow shell system and their application to an inverse problem",
abstract = "In this paper we derive some quantitative uniqueness estimates for the shallow shell equations. Our proof relies on appropriate Carleman estimates. For applications, we consider the size estimate inverse problem.",
author = "{Di Cristo}, Michele and Ching-Lung Lin and Wang, {Jenn Nan}",
year = "2013",
language = "English",
volume = "12",
pages = "43--92",
journal = "Annali della Scuola normale superiore di Pisa - Classe di scienze",
issn = "0391-173X",
publisher = "Scuola Normale Superiore",
number = "1",

}

Quantitative uniqueness estimates for the shallow shell system and their application to an inverse problem. / Di Cristo, Michele; Lin, Ching-Lung; Wang, Jenn Nan.

In: Annali della Scuola Normale - Classe di Scienze, Vol. 12, No. 1, 2013, p. 43-92.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Quantitative uniqueness estimates for the shallow shell system and their application to an inverse problem

AU - Di Cristo, Michele

AU - Lin, Ching-Lung

AU - Wang, Jenn Nan

PY - 2013

Y1 - 2013

N2 - In this paper we derive some quantitative uniqueness estimates for the shallow shell equations. Our proof relies on appropriate Carleman estimates. For applications, we consider the size estimate inverse problem.

AB - In this paper we derive some quantitative uniqueness estimates for the shallow shell equations. Our proof relies on appropriate Carleman estimates. For applications, we consider the size estimate inverse problem.

UR - http://www.scopus.com/inward/record.url?scp=84888992090&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84888992090&partnerID=8YFLogxK

M3 - Article

VL - 12

SP - 43

EP - 92

JO - Annali della Scuola normale superiore di Pisa - Classe di scienze

JF - Annali della Scuola normale superiore di Pisa - Classe di scienze

SN - 0391-173X

IS - 1

ER -