Quantized Finite-Time Non-fragile Filtering for Singular Markovian Jump Systems with Intermittent Measurements

Sakthivel Rathinasamy, Sathishkumar Murugesan, Faris Alzahrani, Yong Ren

Research output: Contribution to journalArticlepeer-review

20 Citations (Scopus)

Abstract

In this work, the finite-time non-fragile mixed H and passivity filter design problem for a class of discrete-time singular Markovian jump systems with time-varying delays, intermittent measurements and quantization is investigated. The measured output of the plant is quantized by a logarithmic mode-independent quantizer, and the time-varying transition probability matrix is described by a polytope. In this work, it is considered that the missing measurement phenomenon occurs during signal transmission from the plant to the filter, which is described by a stochastic variable that obeys the Bernoulli random binary distribution. Then, by constructing a proper Lyapunov–Krasovskii functional and using the linear matrix inequality (LMI) technique, sufficient conditions are obtained, which ensures that the augmented filtering system is stochastically finite-time boundedness with a prescribed mixed H and passive performance index. Moreover, the filter gains can be computed in terms of solution to a set of LMIs. Finally, two numerical examples are provided to demonstrate the effectiveness and potential of the proposed filter design technique.

Original languageEnglish
Pages (from-to)3971-3995
Number of pages25
JournalCircuits, Systems, and Signal Processing
Volume38
Issue number9
DOIs
Publication statusPublished - 2019 Sept 15

All Science Journal Classification (ASJC) codes

  • Signal Processing
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'Quantized Finite-Time Non-fragile Filtering for Singular Markovian Jump Systems with Intermittent Measurements'. Together they form a unique fingerprint.

Cite this