TY - JOUR
T1 - Rapid detection of dermatophytes and Candida albicans in onychomycosis specimens by an oligonucleotide array
AU - Han, Huan Wen
AU - Hsu, Mark Ming Long
AU - Choi, Jong Soo
AU - Hsu, Chao Kai
AU - Hsieh, Hsin Yi
AU - Li, Hsin Chieh
AU - Chang, Hsien Chang
AU - Chang, Tsung Chain
N1 - Publisher Copyright:
© 2014 Han et al.
PY - 2014/11/7
Y1 - 2014/11/7
N2 - Background: Onychomycosis is a fungal infection of nails, leading to the gradual destruction of the nail plate. Treatment of onychomycosis may need long-time oral antifungal therapy that can have potential side effects, thus accurate diagnosis of the disease before treatment is important. Culture for diagnosis of onychomycosis is time-consuming and has high false-negative rates. To expedite the diagnosis, an oligonucleotide array, based on hybridization between immobilized oligonucleotide probes and PCR products, for direct detection of dermatophytes and Candida albicans in clinical specimens was evaluated. Methods: Species-specific oligonucleotide probes designed from the internal transcribed spacer (ITS) regions of the rRNA gene were immobilized on a nylon membrane. The assay procedures consisted of PCR amplification of the ITS using universal primers, followed by hybridization of the digoxigenin-labeled amplicons to probes on the array. Thirty two nail samples (29 patients) were analyzed by the array, and the results were compared with those obtained by culture. Array-positive but culture-negative samples were confirmed by cloning and re-sequencing of the amplified ITS and by reviewing patient's clinical data. The total recovery of culture and confirmed array-positive but culture-negative results was considered 100% and was used for performance evaluation of both methods. Results: Concordant results were obtained in 21 samples (10 positives and 11 negatives) by both methods. Eleven samples were array-positive but culture-negative; among them, 9 samples were considered true positives after discrepant analysis. Comparing with culture, the array had significantly higher sensitivity [100% (95% CI 82.2% -100%) vs 52.6% (28.9% -75.5%), p < 0.001] and negative predictive value [100% (71.3% -100%) vs 59.1% (36.4% -79.3%), p < 0.05), while no significant differences were observed in specificity (84.6% vs 100%, p =0.48) and positive predictive value (90.5% vs 100%, p =1.0). The whole procedures of the array were about 24 h, whilst results from culture take 1 to 3 weeks. Conclusions: The array offers an accurate and rapid alternative to culture. Rapid diagnosis can expedite appropriate antifungal treatment of onychomycosis. However, the single site nature of this study conducted at a referral hospital invites caution.
AB - Background: Onychomycosis is a fungal infection of nails, leading to the gradual destruction of the nail plate. Treatment of onychomycosis may need long-time oral antifungal therapy that can have potential side effects, thus accurate diagnosis of the disease before treatment is important. Culture for diagnosis of onychomycosis is time-consuming and has high false-negative rates. To expedite the diagnosis, an oligonucleotide array, based on hybridization between immobilized oligonucleotide probes and PCR products, for direct detection of dermatophytes and Candida albicans in clinical specimens was evaluated. Methods: Species-specific oligonucleotide probes designed from the internal transcribed spacer (ITS) regions of the rRNA gene were immobilized on a nylon membrane. The assay procedures consisted of PCR amplification of the ITS using universal primers, followed by hybridization of the digoxigenin-labeled amplicons to probes on the array. Thirty two nail samples (29 patients) were analyzed by the array, and the results were compared with those obtained by culture. Array-positive but culture-negative samples were confirmed by cloning and re-sequencing of the amplified ITS and by reviewing patient's clinical data. The total recovery of culture and confirmed array-positive but culture-negative results was considered 100% and was used for performance evaluation of both methods. Results: Concordant results were obtained in 21 samples (10 positives and 11 negatives) by both methods. Eleven samples were array-positive but culture-negative; among them, 9 samples were considered true positives after discrepant analysis. Comparing with culture, the array had significantly higher sensitivity [100% (95% CI 82.2% -100%) vs 52.6% (28.9% -75.5%), p < 0.001] and negative predictive value [100% (71.3% -100%) vs 59.1% (36.4% -79.3%), p < 0.05), while no significant differences were observed in specificity (84.6% vs 100%, p =0.48) and positive predictive value (90.5% vs 100%, p =1.0). The whole procedures of the array were about 24 h, whilst results from culture take 1 to 3 weeks. Conclusions: The array offers an accurate and rapid alternative to culture. Rapid diagnosis can expedite appropriate antifungal treatment of onychomycosis. However, the single site nature of this study conducted at a referral hospital invites caution.
UR - http://www.scopus.com/inward/record.url?scp=84920829654&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84920829654&partnerID=8YFLogxK
U2 - 10.1186/s12879-014-0581-5
DO - 10.1186/s12879-014-0581-5
M3 - Article
C2 - 25377491
AN - SCOPUS:84920829654
SN - 1471-2334
VL - 14
JO - BMC infectious diseases
JF - BMC infectious diseases
IS - 1
M1 - 581
ER -